Unit commitment problem of power system with plug-in electric vehicles

The electric vehicle (EV) has become a popular topic because of the increasing scarcity of energy sources and growing environmental pollution. Unit commitment (UC) with plug-in hybrid electric vehicle (PHEV) for cost optimization is presented in this paper. The profile of charging load and vehicle-to-grid (V2G) power of PHEV is forecasted, and various scenarios with different PHEV control strategy are simulated. Quantuminspired binary particle swarm optimization algorithm with heuristic strategy has been employed to solve the UC problem. Results show that PHEVs will significantly affect the UC problem. PHEVs bring on new load demand to power system, which will increase the generation cost. However, the coordinated charging strategy and reasonable usage of V2G power can reduce the generating cost. Streszczenie. W artykule przedstawiono problem optymalizacji kosztow ladowania pojazdow elektrycznych (ang. Plug-in Hybrid Electric Vehicle) pod wzgledem doboru jednostek wytworczych. Badaniom poddano rozne metody regulacji przeplywu energii do ladowania odbiornikow w postaci pojazdow elektrycznych. Wykazany zostal wplyw nowego rodzaju obciązenia na zwiekszenie kosztow wytwarzania energii. (Problem zobowiązan energetycznych jednostek wytworczych w systemie energetycznym, zawierającym podlączane pojazdy elektryczne)

[1]  H. H. Balci,et al.  Scheduling electric power generators using particle swarm optimization combined with the Lagrangian relaxation method , 2004 .

[2]  Anastasios G. Bakirtzis,et al.  A genetic algorithm solution to the unit commitment problem , 1996 .

[3]  Yue Yuan,et al.  Modeling of Load Demand Due to EV Battery Charging in Distribution Systems , 2011, IEEE Transactions on Power Systems.

[4]  Francisco D. Galiana,et al.  Towards a more rigorous and practical unit commitment by Lagrangian relaxation , 1988 .

[5]  P. G. Lowery,et al.  Generating Unit Commitment by Dynamic Programming , 1966 .

[6]  Grzegorz Dudek,et al.  Adaptive simulated annealing schedule to the unit commitment problem , 2010 .

[7]  F. N. Lee,et al.  Short-term thermal unit commitment-a new method , 1988 .

[8]  Edward Ungar,et al.  Plug In, Turn On, and Load Up , 2010, IEEE Power and Energy Magazine.

[9]  K. Uezato,et al.  A fast technique for unit commitment problem by extended priority list , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[10]  K. S. Swarup,et al.  A genetic algorithm approach to generator unit commitment , 2003 .

[11]  F. Albuyeh,et al.  Evaluation of Dynamic Programming Based Methods and Multiple area Representation for Thermal Unit Commitments , 1981, IEEE Transactions on Power Apparatus and Systems.

[12]  W. Ongsakul,et al.  Unit commitment by enhanced adaptive Lagrangian relaxation , 2004, IEEE Transactions on Power Systems.

[13]  Francisco D. Galiana,et al.  Unit commitment by simulated annealing , 1990 .

[14]  Robert C. Green,et al.  The impact of plug-in hybrid electric vehicles on distribution networks: a review and outlook , 2010, IEEE PES General Meeting.

[15]  Z. Gaing Discrete particle swarm optimization algorithm for unit commitment , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[16]  S. M. Shahidehpour,et al.  Short-term generation scheduling with transmission and environmental constraints using an augmented Lagrangian relaxation , 1995 .

[17]  Ahmed Yousuf Saber,et al.  Intelligent unit commitment with vehicle-to-grid —A cost-emission optimization , 2010 .

[18]  Xin Jianbo Unit Commitment in Power Systems with Plug-in Electric Vehicles , 2011 .

[19]  Walter L. Snyder,et al.  Dynamic Programming Approach to Unit Commitment , 1987, IEEE Transactions on Power Systems.

[20]  Jong-Bae Park,et al.  A New Quantum-Inspired Binary PSO: Application to Unit Commitment Problems for Power Systems , 2010, IEEE Transactions on Power Systems.

[21]  A. H. Mantawy,et al.  Unit commitment by tabu search , 1998 .

[22]  Richard C. Wilson,et al.  An Application of Mixed-Integer Programming Duality to Scheduling Thermal Generating Systems , 1968 .