Ultrasound-induced encapsulated microbubble phenomena.

[1]  C. Church,et al.  Transient pulsations of small gas bubbles in water , 1988 .

[2]  Ryuichi Morishita,et al.  Local Delivery of Plasmid DNA Into Rat Carotid Artery Using Ultrasound , 2002, Circulation.

[3]  P. Dayton,et al.  Threshold of fragmentation for ultrasonic contrast agents. , 2001, Journal of biomedical optics.

[4]  Detlef Lohse,et al.  Analysis of Rayleigh–Plesset dynamics for sonoluminescing bubbles , 1998, Journal of Fluid Mechanics.

[5]  N de Jong,et al.  Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera. , 2000, Ultrasound in medicine & biology.

[6]  Aspherical bubble collapse–comparison with simulations , 2000 .

[7]  N de Jong,et al.  Detection procedures of ultrasound contrast agents. , 2000, Ultrasonics.

[8]  C. Rotsch,et al.  Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[9]  A. Bouakaz,et al.  Simulations and measurements of optical images of insonified ultrasound contrast microbubbles , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[10]  V L Newhouse,et al.  Second harmonic ultrasonic blood perfusion measurement. , 1993, Ultrasound in medicine & biology.

[11]  Christopher E. Brennen,et al.  Fission of collapsing cavitation bubbles , 2002, Journal of Fluid Mechanics.

[12]  Robert K. Prud'homme,et al.  Foams: Theory: Measurements: Applications , 1995 .

[13]  W. Lauterborn,et al.  Cavitation erosion by single laser-produced bubbles , 1998, Journal of Fluid Mechanics.

[14]  Charles T. Lancée,et al.  Higher harmonics of vibrating gas-filled microspheres. Part two: measurements , 1994 .

[15]  P. C. Duineveld,et al.  Bouncing and coalescence of two bubbles in pure water , 1995 .

[16]  P. Dayton,et al.  Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles. , 1999, Ultrasound in medicine & biology.

[17]  P. Dayton,et al.  Mechanisms of contrast agent destruction , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[18]  K. Chiou,et al.  Clinical applications of contrast echocardiography , 2000 .

[19]  Nico de Jong,et al.  Contrast harmonic imaging. , 2002, Ultrasonics.

[20]  Walter Grassi,et al.  Experimental study on rising velocity of nitrogen bubbles in FC-72 , 2003 .

[21]  Douglas L. Miller,et al.  Theoretical investigation of the response of gas‐filled micropores and cavitation nuclei to ultrasound , 1983 .

[22]  Stanley S. Cook Erosion by Water-Hammer , 1928 .

[23]  K. Takayama,et al.  Dynamic behavior of bubbles during extracorporeal shock-wave lithotripsy. , 1998, Ultrasound in medicine & biology.

[24]  H. Medwin,et al.  Counting bubbles acoustically: a review , 1977 .

[25]  P Tortoli,et al.  On the interaction between ultrasound and contrast agents during Doppler investigations. , 2001, Ultrasound in medicine & biology.

[26]  D. Lohse,et al.  Induced bubble shape oscillations and their impact on the rise velocity , 2002 .

[27]  P. Dayton,et al.  Action of microbubbles when insonified: experimental evidence , 1996, 1996 IEEE Ultrasonics Symposium. Proceedings.

[28]  Nico de Jong,et al.  Ultrasound-induced microbubble coalescence. , 2004, Ultrasound in medicine & biology.

[29]  K. Hynynen,et al.  Optical monitoring of ultrasound interaction with blood vessels in transparent fish after injection with contrast agents , 2002, 2002 IEEE Ultrasonics Symposium, 2002. Proceedings..

[30]  G. Truskey,et al.  Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. , 2000, Biophysical journal.

[31]  F Forsberg,et al.  Destruction of contrast microbubbles and the association with inertial cavitation. , 2000, Ultrasound in medicine & biology.

[32]  P. Dayton,et al.  Experimental validation of a theoretical framework to predict radiation force displacement of contrast agents , 2001, 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263).

[33]  A. Bouakaz,et al.  Noninvasive pressure measurement using microbubble contrast agent and wavelet transforms , 2000, 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121).

[34]  K. Nightingale,et al.  A preliminary evaluation of the effects of primary and secondary radiation forces on acoustic contrast agents , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[35]  M. Davies,et al.  Atherosclerotic plaque caps are locally weakened when macrophages density is increased. , 1991, Atherosclerosis.

[36]  M. Postema,et al.  Noninvasive microbubble-based pressure measurements: a simulation study. , 2004, Ultrasonics.

[37]  P. Marmottant,et al.  Controlled vesicle deformation and lysis by single oscillating bubbles , 2003, Nature.

[38]  N de Jong,et al.  Acoustic modeling of shell-encapsulated gas bubbles. , 1998, Ultrasound in medicine & biology.

[39]  P. Dayton,et al.  Experimental and theoretical evaluation of microbubble behavior: effect of transmitted phase and bubble size , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[40]  Detlef Lohse,et al.  Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames , 2003 .

[41]  Eleanor Stride,et al.  On the destruction of microbubble ultrasound contrast agents. , 2003, Ultrasound in medicine & biology.

[42]  Charles T. Lancée,et al.  Higher harmonics of vibrating gas-filled microspheres. Part one: simulations , 1994 .

[43]  C. Nuntadusit,et al.  CAVITATION BUBBLE BEHAVIOR NEAR SOLID BOUNDARIES , 2001 .

[44]  A. Klibanov,et al.  Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging. , 1999, Advanced drug delivery reviews.

[45]  Koichi Ogawa,et al.  Induction of cell-membrane porosity by ultrasound , 1999, The Lancet.

[46]  E. Unger,et al.  Therapeutic applications of microbubbles. , 2002, European journal of radiology.

[47]  A. Sheludko,et al.  Thin liquid films , 1967 .

[48]  A R Jayaweera,et al.  Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. , 1998, Circulation.

[49]  Morton W. Miller,et al.  Gene transfection and drug delivery. , 2000, Ultrasound in medicine & biology.

[50]  Nico de Jong,et al.  Acoustic properties of ultrasound contrast agents , 1993 .

[51]  R V Shohet,et al.  Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. , 2000, Circulation.

[52]  N de Jong,et al.  Effect of ultrasound on the release of micro-encapsulated drugs. , 1998, Ultrasonics.

[53]  F. T. ten Cate,et al.  Super harmonic imaging: a new imaging technique for improved contrast detection. , 2002, Ultrasound in medicine & biology.

[54]  K W Ferrara,et al.  Optical and acoustical dynamics of microbubble contrast agents inside neutrophils. , 2001, Biophysical journal.

[55]  M. Postema,et al.  Optically observed microbubble coalescence and collapse , 2002, 2002 IEEE Ultrasonics Symposium, 2002. Proceedings..

[56]  Carmel M. Moran,et al.  Handbook of contrast echocardiography LV function and myocardial perfusion , 2001 .

[57]  N. Kudo,et al.  Study on the mechanism of cell damage caused by microbubbles exposed to ultrasound , 2003 .

[58]  Michael Selwyn Longuet-Higgins,et al.  The crushing of air cavities in a liquid , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[59]  C. Ohl,et al.  Shock-wave-induced jetting of micron-size bubbles. , 2003, Physical review letters.

[60]  A. Szeri,et al.  Coupled dynamics of translation and collapse of acoustically driven microbubbles. , 2002, The Journal of the Acoustical Society of America.

[61]  Barry B. Goldberg,et al.  Intravenous Contrast Agent For Ultrasound Doppler: In Vivo Measurement Of Small Tumor Vessel Dose-response , 1990, [1990] Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[62]  F. Calliada,et al.  Ultrasound contrast agents: basic principles. , 1998, European journal of radiology.

[63]  Nico de Jong,et al.  Improved contrast to tissue ratio at higher harmonics. , 2002, Ultrasonics.

[64]  W Lauterborn,et al.  Cavitation bubble dynamics. , 1997, Ultrasonics sonochemistry.

[65]  H. Pain,et al.  The physics of vibrations and waves , 1968 .

[66]  Flemming Forsberg,et al.  Ultrasound Contrast Agents: Basic Principles and Clinical Applications , 2001 .

[67]  Harald Becher,et al.  Handbook of Contrast Echocardiography , 2000, Springer Berlin Heidelberg.

[68]  M. Postema,et al.  Real-time optical imaging of individual microbubbles in an ultrasonic field , 2001, 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263).

[69]  N. Jong,et al.  Ultrasound-induced microbubble coalescence by parametric instability , 2003 .

[70]  F. T. ten Cate,et al.  Effects of diagnostic ultrasound parameters on molecular uptake and cell viability , 2002, 2002 IEEE Ultrasonics Symposium, 2002. Proceedings..

[71]  G. Haar The Acoustic Bubble , 1996 .

[72]  P. Dayton,et al.  Simultaneous optical and acoustical observations of contrast agents , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).

[73]  A. K. Chesters,et al.  Bubble coalescence in pure liquids , 1982 .

[74]  M. Strasberg,et al.  Gas Bubbles as Sources of Sound in Liquids , 1956 .

[75]  H. G. Flynn Cavitation dynamics: II. Free pulsations and models for cavitation bubbles , 1975 .

[76]  T C Skalak,et al.  Direct In Vivo Visualization of Intravascular Destruction of Microbubbles by Ultrasound and Its Local Effects on Tissue. , 1998, Circulation.

[77]  N. de Jong,et al.  A new ultrasound contrast imaging approach based on the combination of multiple imaging pulses and a separate release burst , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[78]  W. Kraus,et al.  Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. , 2001, Journal of biomechanics.

[79]  J. Gorce,et al.  Influence of Bubble Size Distribution on the Echogenicity of Ultrasound Contrast Agents: A Study of SonoVue™ , 2000, Investigative radiology.

[80]  P M Shankar,et al.  Subharmonic backscattering from ultrasound contrast agents. , 1999, The Journal of the Acoustical Society of America.

[81]  V. Uhlendorf,et al.  Nonlinear acoustical response of coated microbubbles in diagnostic ultrasound , 1994, 1994 Proceedings of IEEE Ultrasonics Symposium.