A DIFFERENT APPROACH TO BOUNDING THE MINIMALRESIDUAL NORM IN KRYLOV

In the context of Krylov methods for solving systems of linear equations, expressions and bounds are derived for the norm of the minimal residual, like the one produced by GMRES or MINRES. It is shown that the minimal residual norm is large as long as the Krylov basis is well-conditioned. In the context of non-normal matrices, examples are given where the minimal residual norm is a function of the departure of the matrix from normality, and where the decrease of the residual norm depends on how large the departure from normality is compared to the eigenvalues. With regard to normal matrices, the Krylov matrix is unitarily equivalent to a row-scaled Vandermonde matrix and the minimal residual norm in iteration i is proportional to a product of i relative eigenvalue separations. Arguments are given for why normal matrices with complex eigenvalues can produce larger residual norms than Hermitian matrices, and why indeenite matrices can produce larger residual norms than deenite matrices.

[1]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[2]  W. Gautschi,et al.  Lower bounds for the condition number of Vandermonde matrices , 1987 .

[3]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[4]  H. Walker,et al.  GMRES On (Nearly) Singular Systems , 1997, SIAM J. Matrix Anal. Appl..

[5]  D. Fasino,et al.  On the spectral condition of rectangular vandermonde matrices , 1992 .

[6]  F. D. Parker Inverses of Vandermonde Matrices , 1964 .

[7]  Peter N. Brown,et al.  A Theoretical Comparison of the Arnoldi and GMRES Algorithms , 1991, SIAM J. Sci. Comput..

[8]  Anne Greenbaum,et al.  Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..

[9]  Thomas A. Manteuffel,et al.  Minimal Residual Method Stronger than Polynomial Preconditioning , 1996, SIAM J. Matrix Anal. Appl..

[10]  P. Henrici Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices , 1962 .

[11]  H. V. D. Vorst,et al.  The superlinear convergence behaviour of GMRES , 1993 .

[12]  Henk A. van der Vorst,et al.  Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..

[13]  Marlis Hochbruck,et al.  Error Analysis of Krylov Methods In a Nutshell , 1998, SIAM J. Sci. Comput..

[14]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[15]  Walter Gautschi,et al.  Norm estimates for inverses of Vandermonde matrices , 1974 .

[16]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[17]  Ilse C. F. Ipsen,et al.  From Bareiss' Algorithm to the Stable Computation of Partial Correlations , 1989 .

[18]  G. Stewart Collinearity and Least Squares Regression , 1987 .

[19]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[20]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[21]  Anne Greenbaum,et al.  Max-Min Properties of Matrix Factor Norms , 1994, SIAM J. Sci. Comput..

[22]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[23]  G. Golub,et al.  Iterative solution of linear systems , 1991, Acta Numerica.

[24]  Lloyd N. Trefethen,et al.  How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..

[25]  Walter Gautschi,et al.  Vandermonde matrices on the circle: Spectral properties and conditioning , 1990 .

[26]  William Kahan,et al.  Some new bounds on perturbation of subspaces , 1969 .

[27]  E. E. Tyrtyshnikov How bad are Hankel matrices? , 1994 .

[28]  GuMing,et al.  Efficient algorithms for computing a strong rank-revealing QR factorization , 1996 .

[29]  R. Cottle On manifestations of the Schur complement , 1975 .

[30]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[31]  Ilse C. F. Ipsen,et al.  On the Sensitivity of Solution Components in Linear Systems of Equations , 1995, SIAM J. Matrix Anal. Appl..

[32]  Willy Govaerts,et al.  A Singular Value Inequality for Block Matrices , 1989 .

[33]  Lloyd N. Trefethen,et al.  A Hybrid GMRES Algorithm for Nonsymmetric Linear Systems , 1992, SIAM J. Matrix Anal. Appl..

[34]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[35]  Ilse C. F. Ipsen,et al.  Perturbation Theory for the Solution of Systems of Linear Equations , 1991 .

[36]  Chandler Davis The rotation of eigenvectors by a perturbation , 1963 .