A DIFFERENT APPROACH TO BOUNDING THE MINIMALRESIDUAL NORM IN KRYLOV
暂无分享,去创建一个
[1] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[2] W. Gautschi,et al. Lower bounds for the condition number of Vandermonde matrices , 1987 .
[3] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[4] H. Walker,et al. GMRES On (Nearly) Singular Systems , 1997, SIAM J. Matrix Anal. Appl..
[5] D. Fasino,et al. On the spectral condition of rectangular vandermonde matrices , 1992 .
[6] F. D. Parker. Inverses of Vandermonde Matrices , 1964 .
[7] Peter N. Brown,et al. A Theoretical Comparison of the Arnoldi and GMRES Algorithms , 1991, SIAM J. Sci. Comput..
[8] Anne Greenbaum,et al. Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..
[9] Thomas A. Manteuffel,et al. Minimal Residual Method Stronger than Polynomial Preconditioning , 1996, SIAM J. Matrix Anal. Appl..
[10] P. Henrici. Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices , 1962 .
[11] H. V. D. Vorst,et al. The superlinear convergence behaviour of GMRES , 1993 .
[12] Henk A. van der Vorst,et al. Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..
[13] Marlis Hochbruck,et al. Error Analysis of Krylov Methods In a Nutshell , 1998, SIAM J. Sci. Comput..
[14] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[15] Walter Gautschi,et al. Norm estimates for inverses of Vandermonde matrices , 1974 .
[16] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[17] Ilse C. F. Ipsen,et al. From Bareiss' Algorithm to the Stable Computation of Partial Correlations , 1989 .
[18] G. Stewart. Collinearity and Least Squares Regression , 1987 .
[19] Roland W. Freund,et al. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..
[20] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[21] Anne Greenbaum,et al. Max-Min Properties of Matrix Factor Norms , 1994, SIAM J. Sci. Comput..
[22] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[23] G. Golub,et al. Iterative solution of linear systems , 1991, Acta Numerica.
[24] Lloyd N. Trefethen,et al. How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..
[25] Walter Gautschi,et al. Vandermonde matrices on the circle: Spectral properties and conditioning , 1990 .
[26] William Kahan,et al. Some new bounds on perturbation of subspaces , 1969 .
[27] E. E. Tyrtyshnikov. How bad are Hankel matrices? , 1994 .
[28] GuMing,et al. Efficient algorithms for computing a strong rank-revealing QR factorization , 1996 .
[29] R. Cottle. On manifestations of the Schur complement , 1975 .
[30] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[31] Ilse C. F. Ipsen,et al. On the Sensitivity of Solution Components in Linear Systems of Equations , 1995, SIAM J. Matrix Anal. Appl..
[32] Willy Govaerts,et al. A Singular Value Inequality for Block Matrices , 1989 .
[33] Lloyd N. Trefethen,et al. A Hybrid GMRES Algorithm for Nonsymmetric Linear Systems , 1992, SIAM J. Matrix Anal. Appl..
[34] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[35] Ilse C. F. Ipsen,et al. Perturbation Theory for the Solution of Systems of Linear Equations , 1991 .
[36] Chandler Davis. The rotation of eigenvectors by a perturbation , 1963 .