Tractable Counting of the Answers to Conjunctive Queries

Conjunctive queries (CQs) are one of the most fundamental forms of database queries. In general, the evaluation of CQs is NP-complete. Consequently, there has been an intensive search for tractable fragments. In this paper, we want to initiate a systematic search for tractable fragments of the counting problem of CQs, i.e., the problem of counting the answers to a CQ. We prove several new tractability and intractability results by starting with acyclic conjunctive queries and generalising these results to CQs of bounded hypertree-width. We also extend our study to the counting problem of unions of CQs.

[1]  Phokion G. Kolaitis,et al.  Conjunctive-query containment and constraint satisfaction , 1998, PODS.

[2]  Nadia Creignou,et al.  Complexity of Generalized Satisfiability Counting Problems , 1996, Inf. Comput..

[3]  Phokion G. Kolaitis,et al.  Subtractive Reductions and Complete Problems for Counting Complexity Classes , 2000, MFCS.

[4]  Martin Grohe The complexity of homomorphism and constraint satisfaction problems seen from the other side , 2007, JACM.

[5]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[6]  Francesco Scarcello,et al.  Structural Tractability of Enumerating CSP Solutions , 2010, CP.

[7]  Thomas Schwentick,et al.  When is the evaluation of conjunctive queries tractable? , 2001, STOC '01.

[8]  Ronald Fagin,et al.  Degrees of acyclicity for hypergraphs and relational database schemes , 1983, JACM.

[9]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[10]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[11]  Georg Gottlob,et al.  Hypertree decompositions and tractable queries , 1998, J. Comput. Syst. Sci..

[12]  Anand Rajaraman,et al.  Conjunctive query containment revisited , 1997, Theor. Comput. Sci..

[13]  Jacobo Torán,et al.  On Counting and Approximation , 1988, CAAP.

[14]  Georg Gottlob,et al.  A Comparison of Structural CSP Decomposition Methods , 1999, IJCAI.

[15]  Jörg Flum,et al.  The Parameterized Complexity of Counting Problems , 2004, SIAM J. Comput..

[16]  Francesco Scarcello,et al.  Structural Tractability of Constraint Optimization , 2011, CP.

[17]  Georg Gottlob,et al.  The complexity of acyclic conjunctive queries , 2001, JACM.

[18]  Mihalis Yannakakis,et al.  Algorithms for Acyclic Database Schemes , 1981, VLDB.

[19]  Ashok K. Chandra,et al.  Optimal implementation of conjunctive queries in relational data bases , 1977, STOC '77.

[20]  Clement T. Yu,et al.  An algorithm for tree-query membership of a distributed query , 1979, COMPSAC.

[21]  Reinhard Pichler,et al.  The complexity of evaluating tuple generating dependencies , 2011, ICDT '11.

[22]  Timothy J. Long,et al.  Quantitative Relativizations of Complexity Classes , 1984, SIAM J. Comput..

[23]  Jan Van den Buss,et al.  Database Interrogation Using Conjunctive Queries , 2007 .

[24]  Heribert Vollmer,et al.  An Algebraic Approach to the Complexity of Generalized Conjunctive Queries , 2004, SAT.

[25]  Peter Jonsson,et al.  The complexity of counting homomorphisms seen from the other side , 2004, Theor. Comput. Sci..

[26]  Jörg Flum,et al.  Query evaluation via tree-decompositions , 2001, JACM.