Global pattern of phytoplankton diversity driven by temperature and environmental variability

In situ data and modeling offer a first global view of the spatial pattern of phytoplankton species richness in the ocean. Despite their importance to ocean productivity, global patterns of marine phytoplankton diversity remain poorly characterized. Although temperature is considered a key driver of general marine biodiversity, its specific role in phytoplankton diversity has remained unclear. We determined monthly phytoplankton species richness by using niche modeling and >540,000 global phytoplankton observations to predict biogeographic patterns of 536 phytoplankton species. Consistent with metabolic theory, phytoplankton richness in the tropics is about three times that in higher latitudes, with temperature being the most important driver. However, below 19°C, richness is lower than expected, with ~8°– 14°C waters (~35° to 60° latitude) showing the greatest divergence from theoretical predictions. Regions of reduced richness are characterized by maximal species turnover and environmental variability, suggesting that the latter reduces species richness directly, or through enhancing competitive exclusion. The nonmonotonic relationship between phytoplankton richness and temperature suggests unanticipated complexity in responses of marine biodiversity to ocean warming.

[1]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[2]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[3]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[4]  E. Marañón,et al.  Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates , 2018, The ISME Journal.

[5]  Mridul K. Thomas,et al.  Temperature‐ and size‐scaling of phytoplankton population growth rates: Reconciling the Eppley curve and the metabolic theory of ecology , 2017 .

[6]  S. Lehtinen,et al.  Phytoplankton species richness, evenness, and production in relation to nutrient availability and imbalance , 2017 .

[7]  T. Rynearson,et al.  Evidence for environmental and ecological selection in a microbe with no geographic limits to gene flow , 2017, Proceedings of the National Academy of Sciences.

[8]  Filippo Bussotti,et al.  Positive biodiversity-productivity relationship predominant in global forests , 2016, Science.

[9]  C. Marrasè,et al.  Marine Primary Productivity Is Driven by a Selection Effect , 2016, Front. Mar. Sci..

[10]  Stéphane Audic,et al.  Insights into global diatom distribution and diversity in the world’s ocean , 2016, Proceedings of the National Academy of Sciences.

[11]  A. D. Barton,et al.  Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities , 2016, Proceedings of the National Academy of Sciences.

[12]  Luis Pedro Coelho,et al.  Plankton networks driving carbon export in the oligotrophic ocean , 2015, Nature.

[13]  Nicolas Gruber,et al.  Global coccolithophore diversity: Drivers and future change , 2016 .

[14]  Peer Bork,et al.  Environmental characteristics of Agulhas rings affect interocean plankton transport , 2015, Science.

[15]  P. Bork,et al.  Eukaryotic plankton diversity in the sunlit ocean , 2015, Science.

[16]  E. Marañón,et al.  Marine nano- and microphytoplankton diversity: redrawing global patterns from sampling-standardized data , 2015 .

[17]  Colleen J. O'Brien,et al.  Ecological niches of open ocean phytoplankton taxa , 2015 .

[18]  H. Fort,et al.  Metabolic dependence of phytoplankton species richness , 2015 .

[19]  Jane Elith,et al.  What do we gain from simplicity versus complexity in species distribution models , 2014 .

[20]  B. Beszteri,et al.  Potential effects of climate change on the distribution range of the main silicate sinker of the Southern Ocean , 2014, Ecology and evolution.

[21]  Emilio Marañón,et al.  Sampling the limits of species richness in marine phytoplankton communities , 2014 .

[22]  M. Loreau,et al.  Global relationship between phytoplankton diversity and productivity in the ocean , 2014, Nature Communications.

[23]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[24]  J. Calabrese,et al.  Stacking species distribution models and adjusting bias by linking them to macroecological models , 2014 .

[25]  Scott C. Doney,et al.  MAREDAT: towards a world atlas of MARine Ecosystem DATa , 2013 .

[26]  D. Harbour,et al.  Marine microplankton diversity database. , 2013 .

[27]  J. Chave,et al.  Latitudinal phytoplankton distribution and the neutral theory of biodiversity , 2013 .

[28]  K. Pollard,et al.  Global marine bacterial diversity peaks at high latitudes in winter , 2013, The ISME Journal.

[29]  Michael D. Guiry,et al.  AlgaeBase. World-wide electronic publication , 2013 .

[30]  Timothy P. Boyer,et al.  World ocean atlas 2013. Volume 4, Dissolved inorganic nutrients (phosphate, nitrate, silicate) , 2013 .

[31]  G. Hunt,et al.  Latitudinal species diversity gradient of marine zooplankton for the last three million years. , 2012, Ecology letters.

[32]  F. Jiguet,et al.  Selecting pseudo‐absences for species distribution models: how, where and how many? , 2012 .

[33]  Deborah K. Smith,et al.  A Cross-calibrated, Multiplatform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications , 2011 .

[34]  L. Legendre,et al.  Marine copepod diversity patterns and the metabolic theory of ecology , 2011, Oecologia.

[35]  M. Perry,et al.  Guidelines towards an integrated ocean observation system for ecosystems and biogeochemical cycles , 2010 .

[36]  Walter Jetz,et al.  Global patterns and predictors of marine biodiversity across taxa , 2010, Nature.

[37]  P. Boyd,et al.  Environmental control of open‐ocean phytoplankton groups: Now and in the future , 2010 .

[38]  S. Lek,et al.  Uncertainty in ensemble forecasting of species distribution , 2010 .

[39]  Stephanie Dutkiewicz,et al.  Patterns of Diversity in Marine Phytoplankton , 2010, Science.

[40]  Paul G Falkowski,et al.  Controls on Diatom Biogeography in the Ocean , 2009, Science.

[41]  Steven J. Phillips,et al.  Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. , 2009, Ecological applications : a publication of the Ecological Society of America.

[42]  Paul G. Falkowski,et al.  The role of nutricline depth in regulating the ocean carbon cycle , 2008, Proceedings of the National Academy of Sciences.

[43]  Robert Ptacnik,et al.  Diversity predicts stability and resource use efficiency in natural phytoplankton communities , 2008, Proceedings of the National Academy of Sciences.

[44]  W. Jetz,et al.  Global patterns and determinants of vascular plant diversity , 2007, Proceedings of the National Academy of Sciences.

[45]  Omri Allouche,et al.  Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) , 2006 .

[46]  James H. Brown,et al.  Kinetic effects of temperature on rates of genetic divergence and speciation. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Xabier Irigoien,et al.  Scaling the metabolic balance of the oceans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[48]  David W. Sims,et al.  Using continuous plankton recorder data , 2006 .

[49]  R. Jordan,et al.  A revised classification scheme for living haptophytes , 2004 .

[50]  Daniele Iudicone,et al.  Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology , 2004 .

[51]  Richard Field,et al.  Predictions and tests of climate‐based hypotheses of broad‐scale variation in taxonomic richness , 2004 .

[52]  Paul G. Falkowski,et al.  The Evolution of Modern Eukaryotic Phytoplankton , 2004, Science.

[53]  James H. Brown,et al.  Toward a metabolic theory of ecology , 2004 .

[54]  Jef Huisman,et al.  Global biodiversity patterns of marine phytoplankton and zooplankton , 2004, Nature.

[55]  James H. Brown,et al.  Global Biodiversity, Biochemical Kinetics, and the Energetic-Equivalence Rule , 2002, Science.

[56]  C. Rahbek,et al.  Geographic Range Size and Determinants of Avian Species Richness , 2002, Science.

[57]  Helmut Hillebrand,et al.  Body size determines the strength of the latitudinal diversity gradient , 2001 .

[58]  W. Prell,et al.  Environmental controls on the geographic distribution of zooplankton diversity , 1999, Nature.

[59]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[60]  G. C. Stevens The Latitudinal Gradient in Geographical Range: How so Many Species Coexist in the Tropics , 1989, The American Naturalist.

[61]  R. Margalef Life-forms of phytoplankton as survival alternatives in an unstable environment , 1978 .

[62]  H. Okada,et al.  Community Structure of Coccolithophores in the Photic Layer of the Mid-Pacific , 1974 .

[63]  G. E. Hutchinson,et al.  The Balance of Nature and Human Impact: The paradox of the plankton , 2013 .

[64]  Peter Gluchowski,et al.  F , 1934, The Herodotus Encyclopedia.