MAC‐v1: A new global aerosol climatology for climate studies

phere by about 21.6 W/m 2 from which 20.5 W/m 2 (with an uncertainty of60.2 W/m 2 ) is attributed to anthropogenic activities. Based on past and projected aerosol emission data, the global anthropogenic direct aerosol impact (i.e., ToA cooling) is currently near the maximum and is projected to drop by 2100 to about 20.3 W/m 2 . The reported global averages are driven by considerable spatial and temporal variability. To better convey this diversity, regional and seasonal distributions of aerosol optical properties and their radiative effects are presented. On regional scales, the anthropogenic direct aerosol forcing can be an order of magnitude stronger than the global average and it can be of either sign. It is also shown that maximum anthropogenic impacts have shifted during the last 30 years from the U.S. and Europe to eastern and southern Asia.

[1]  M. Chin,et al.  A multimodel assessment of the influence of regional anthropogenic emission reductions on aerosol direct radiative forcing and the role of intercontinental transport , 2013 .

[2]  Thomas C. Grenfell,et al.  Surface Albedo of the Antarctic Sea Ice Zone , 2005 .

[3]  D. Winker,et al.  Initial performance assessment of CALIOP , 2007 .

[4]  Sundar A. Christopher,et al.  Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model , 2008 .

[5]  Michael Schulz,et al.  Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations , 2006 .

[6]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from AERONET Sun and sky-radiance measurements , 1999 .

[7]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[8]  Stephen E. Schwartz,et al.  Observing and Modeling Earth’s Energy Flows , 2012, Surveys in Geophysics.

[9]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[10]  D. Koch Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM , 2001 .

[11]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[12]  F. X. Kneizys,et al.  AFGL atmospheric constituent profiles (0-120km) , 1986 .

[13]  Atsushi Shimizu,et al.  Lidar Network for Monitoring Asian Dust and Air Pollution Aerosols , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[14]  Axel Lauer,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Analysis and quantification of the diversities of aerosol life cycles , 2022 .

[15]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[16]  J. Dave,et al.  Scattering of visible light by large water spheres. , 1969, Applied optics.

[17]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[18]  B Nilsson,et al.  Meteorological influence on aerosol extinction in the 0.2-40-microm wavelength range. , 1979, Applied optics.

[19]  M. Jacobson Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols , 2001 .

[20]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[21]  S. Kinne Remote sensing data combinations: superior global maps for aerosol optical depth , 2009 .

[22]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[23]  M. Chin,et al.  A review of measurement-based assessments of the aerosol direct radiative effect and forcing , 2005 .

[24]  V. Ramanathan,et al.  Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations , 2005 .

[25]  W. Collins,et al.  An AeroCom initial assessment – optical properties in aerosol component modules of global models , 2018 .

[26]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[27]  John H. Seinfeld,et al.  Global impacts of gas‐phase chemistry‐aerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone , 2005 .

[28]  Jonathan P. Taylor,et al.  Studies with a flexible new radiation code. II: Comparisons with aircraft short‐wave observations , 1996 .

[29]  S. Kinne,et al.  Evaluation of spatio-temporal variability of Hamburg Aerosol Climatology against aerosol datasets from MODIS and CALIOP , 2013 .

[30]  A. Kirkevåg,et al.  Global direct radiative forcing by process‐parameterized aerosol optical properties , 2002 .

[31]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[32]  W. Collins,et al.  Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX , 2001 .

[33]  K. Lehtinen,et al.  On the hygroscopic growth of ammoniated sulfate particles of non-stoichiometric composition , 2006 .

[34]  S. Emori,et al.  Simulation of climate response to aerosol direct and indirect effects with aerosol transport‐radiation model , 2005 .

[35]  B. Holben,et al.  A global view of aerosols from merged transport models, satellite, and ground observations : Global aerosol system , 2005 .

[36]  William B. Rossow,et al.  Comparison of ISCCP and Other Cloud Amounts , 1993 .

[37]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[38]  Alexander Smirnov,et al.  Maritime Aerosol Network as a component of Aerosol Robotic Network , 2009 .

[39]  John F. B. Mitchell,et al.  The next generation of scenarios for climate change research and assessment , 2010, Nature.

[40]  David G. Streets,et al.  Nitrate aerosols today and in 2030: a global simulation including aerosols and tropospheric ozone , 2007 .

[41]  W. Weaver,et al.  Two-Stream Approximations to Radiative Transfer in Planetary Atmospheres: A Unified Description of Existing Methods and a New Improvement , 1980 .

[42]  R. Gautam,et al.  Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010 , 2012 .

[43]  Michael Schulz,et al.  Estimates of global multicomponent aerosol optical depth and direct radiative perturbation in the Laboratoire de Météorologie Dynamique general circulation model , 2005 .

[44]  A. Heimo,et al.  Aerosol optical depth measurements by means of a Sun photometer network in Switzerland , 2001 .

[45]  M. Razinger,et al.  Aerosol analysis and forecast in the European Centre for Medium‐Range Weather Forecasts Integrated Forecast System: 2. Data assimilation , 2009 .

[46]  Teruyuki Nakajima,et al.  Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements , 2002 .

[47]  Makiko Nakata,et al.  Estimating Aerosol Emissions by Assimilating Remote Sensing Observations into a Global Transport Model , 2012, Remote. Sens..

[48]  J. Hansen,et al.  Efficacy of climate forcings , 2005 .

[49]  O. Boucher,et al.  A study of the global cycle of carbonaceous aerosols in the LMDZT general circulation model , 2004 .

[50]  J. Bösenberg,et al.  EARLINET: A European Aerosol Research Lidar Network to Establish an Aerosol Climatology , 2003 .

[51]  O. Boucher,et al.  The aerosol-climate model ECHAM5-HAM , 2004 .

[52]  D. Fahey,et al.  Atmospheric Chemistry and Physics Modelled Radiative Forcing of the Direct Aerosol Effect with Multi-observation Evaluation , 2022 .

[53]  Tami C. Bond,et al.  Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom , 2006 .

[54]  Ellsworth J. Welton,et al.  Global monitoring of clouds and aerosols using a network of micropulse lidar systems , 2001, SPIE Asia-Pacific Remote Sensing.

[55]  K. Mitchell,et al.  A Comparison between Snow Cover Products Derived from Visible and Microwave Satellite Observation , 1996 .

[56]  O. Boucher,et al.  Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2‐ES and the role of ammonium nitrate , 2011 .

[57]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[58]  O. Boucher,et al.  Global estimate of aerosol direct radiative forcing from satellite measurements , 2005, Nature.

[59]  W. Collins,et al.  Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results , 2012 .