A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell

Abstract In recent years, accurate identification of voltage versus current ( V – I ) characteristics of proton exchange membrane fuel cell (PEMFC) has attracted significant attention in the literature. However, the main drawback in accurate modeling is the lack of information about the precise values of the model parameters. In this paper, in order to overcome this drawback a grouping-based global harmony search algorithm, named GGHS, is proposed for parameter identification issue. The proposed algorithm attempts to provide an efficient way in which a new harmony can be properly improvised. In order to study the capability of the proposed algorithm, the results obtained by GGHS are compared with those obtained by two versions of harmony search (HS) algorithms, three versions of particle swarm optimization (PSO) algorithms, as well as seeker optimization algorithm (SOA). Simulation results accentuate the superiority of the GGHS over the other methods.

[1]  Z. Geem,et al.  PARAMETER ESTIMATION OF THE NONLINEAR MUSKINGUM MODEL USING HARMONY SEARCH 1 , 2001 .

[2]  M.G. Simoes,et al.  Sensitivity analysis of the modeling parameters used in Simulation of proton exchange membrane fuel cells , 2005, IEEE Transactions on Energy Conversion.

[3]  Markku Ohenoja,et al.  Identification of electrochemical model parameters in PEM fuel cells , 2009, 2009 International Conference on Power Engineering, Energy and Electrical Drives.

[4]  Zong Woo Geem,et al.  Novel derivative of harmony search algorithm for discrete design variables , 2008, Appl. Math. Comput..

[5]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[6]  Chaohua Dai,et al.  Seeker Optimization Algorithm for Digital IIR Filter Design , 2010, IEEE Transactions on Industrial Electronics.

[7]  Mohammad Tariq Iqbal,et al.  Modelling and Analysis of Electro‐chemical, Thermal, and Reactant Flow Dynamics for a PEM Fuel Cell System , 2005 .

[8]  Xin-Jian Zhu,et al.  Parameter optimization for a PEMFC model with a hybrid genetic algorithm , 2006 .

[9]  Atilla Biyikoglu,et al.  Review of proton exchange membrane fuel cell models , 2005 .

[10]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[11]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[12]  Bijaya K. Panigrahi,et al.  Exploratory Power of the Harmony Search Algorithm: Analysis and Improvements for Global Numerical Optimization , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[13]  Michael N. Vrahatis,et al.  On the computation of all global minimizers through particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[14]  A. T. de Almeida,et al.  A new parameter extraction method for accurate modeling of PEM fuel cells , 2009 .

[15]  Kwee-Bo Sim,et al.  Parameter-setting-free harmony search algorithm , 2010, Appl. Math. Comput..

[16]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[17]  Xin Wang,et al.  A novel global harmony search algorithm for task assignment problem , 2010, J. Syst. Softw..

[18]  Alireza Rezazadeh,et al.  Optimization of PEMFC model parameters with a modified particle swarm optimization , 2011 .

[19]  Pierre R. Roberge,et al.  Development and application of a generalised steady-state electrochemical model for a PEM fuel cell , 2000 .

[20]  Rajesh Kumar,et al.  An Improved Harmony Search algorithm for optimal scheduling of the diesel generators in oil rig platforms , 2011 .

[21]  Leandro dos Santos Coelho,et al.  An improved harmony search algorithm for power economic load dispatch , 2009 .

[22]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[23]  Luciane Neves Canha,et al.  An electrochemical-based fuel-cell model suitable for electrical engineering automation approach , 2004, IEEE Transactions on Industrial Electronics.

[24]  A. T. de Almeida,et al.  A parameter optimized model of a Proton Exchange Membrane fuel cell including temperature effects , 2008 .

[25]  X. D. Xue,et al.  Unified mathematical modelling of steady-state and dynamic voltage–current characteristics for PEM fuel cells , 2006 .

[26]  Daniel Hissel,et al.  Characterisation and modelling of a 5 kW PEMFC for transportation applications , 2006 .

[27]  M. Fesanghary,et al.  Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm , 2009 .

[28]  Kauko Leiviskä,et al.  Validation of genetic algorithm results in a fuel cell model , 2010 .

[29]  Jing J. Liang,et al.  A self-adaptive global best harmony search algorithm for continuous optimization problems , 2010, Appl. Math. Comput..

[30]  Meiying Ye,et al.  Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization , 2009 .

[31]  Mehmet Fatih Tasgetiren,et al.  Minimizing the total flow time in a flow shop with blocking by using hybrid harmony search algorithms , 2010, Expert Syst. Appl..

[32]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[33]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).