A Generalized Omega-K Algorithm to Process Translationally Variant Bistatic-SAR Data Based on Two-Dimensional Stolt Mapping

In translationally variant (TV) bistatic synthetic aperture radar (BSAR), 2-D spatial variation is a major problem to be tackled. In this paper, a generalized Omega-K imaging algorithm to deal with this problem is proposed. The method utilizes a point target reference spectrum of the generalized Loffeld's bistatic formula (LBF) (GLBF). Without the bistatic-deformation term, GLBF is the latest development of LBF. Similar to the monostatic case, it has a much simpler form than other point target reference spectra. Based on the spatial linearization of GLBF, the Stolt mapping relationship is derived. Different from the traditional Omega-K algorithms for monostatic SAR and translationally invariant BSAR, this approach uses a 2-D Stolt frequency transformation. Through this transformation, the method can deal with the 2-D spatial variation. It can also consider the linear spatial variation of Doppler parameters, which is usually not considered in the previous publications on bistatic Omega-K algorithms. This method can handle the cases of TV-BSAR with different trajectories, different velocities, high squint angles, and large bistatic angles. In addition, a compensation method for the phase error caused by the linearization is discussed. Numerical simulations and experimental data processing verify the effectiveness of the proposed method.

[1]  Mikhail Cherniakov,et al.  Results of a Space-Surface Bistatic SAR Image Formation Algorithm , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Ian G. Cumming,et al.  A Two-Dimensional Spectrum for Bistatic SAR Processing Using Series Reversion , 2007, IEEE Geoscience and Remote Sensing Letters.

[3]  Ian G. Cumming,et al.  Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation , 2005 .

[4]  G.P. Cardillo On the use of the gradient to determine bistatic SAR resolution , 1990, International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's.

[5]  Hubert Cantalloube,et al.  An Omega-K algorithm for SAR bistatic systems , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[6]  Joachim H. G. Ender,et al.  Processing the Azimuth-Variant Bistatic SAR Data by Using Monostatic Imaging Algorithms Based on Two-Dimensional Principle of Stationary Phase , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[7]  M.R. Ito,et al.  A chirp scaling approach for processing squint mode SAR data , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[8]  Jong-Tae Lim,et al.  Omega-k Algorithm for Airborne Spatial Invariant Bistatic Spotlight SAR Imaging , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Richard Bamler,et al.  A comparison of range-Doppler and wavenumber domain SAR focusing algorithms , 1992, IEEE Trans. Geosci. Remote. Sens..

[10]  Yang Jianyu,et al.  Vehicleborne bistatic synthetic aperture radar imaging , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[11]  F. Rocca,et al.  SAR data focusing using seismic migration techniques , 1991 .

[12]  Zheng Bao,et al.  Bistatic SAR Data Focusing Using an Omega-K Algorithm Based on Method of Series Reversion , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Qing Huo Liu,et al.  An Omega-K Algorithm for Translational Invariant Bistatic SAR Based on Generalized Loffeld's Bistatic Formula , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Joachim H. G. Ender,et al.  Bistatic SAR Experiments With PAMIR and TerraSAR-X—Setup, Processing, and Image Results , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Otmar Loffeld,et al.  Models and useful relations for bistatic SAR processing , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[16]  Chibiao Ding,et al.  An Omega-K Algorithm With Phase Error Compensation for Bistatic SAR of a Translational Invariant Case , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[17]  G. Yates,et al.  Bistatic SAR image formation , 2006 .

[18]  G. Krieger,et al.  ONERA-DLR bistatic SAR campaign: planning, data acquisition, and first analysis of bistatic scattering behaviour of natural and urban targets , 2006 .

[19]  Gerhard Krieger,et al.  Bistatic TerraSAR-X/F-SAR Spaceborne–Airborne SAR Experiment: Description, Data Processing, and Results , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Dario Tarchi,et al.  A ground-based parasitic SAR experiment , 2000, IEEE Trans. Geosci. Remote. Sens..

[21]  Joachim H. G. Ender,et al.  Focusing Spaceborne/Airborne Hybrid Bistatic SAR Data Using Wavenumber-Domain Algorithm , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Mikhail Cherniakov,et al.  Space-Surface Bistatic SAR Image Formation Algorithms , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Ian G. Cumming,et al.  Focusing Bistatic SAR Data Using the Nonlinear Chirp Scaling Algorithm , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Junjie Wu,et al.  Bistatic forward-looking SAR: Theory and challenges , 2009, 2009 IEEE Radar Conference.

[25]  Joachim H. G. Ender,et al.  Chirp-Scaling Algorithm for Bistatic SAR Data in the Constant-Offset Configuration , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Marwan Younis,et al.  First bistatic spaceborne SAR experiments with TanDEM-X , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[27]  Otmar Loffeld,et al.  A Bistatic Point Target Reference Spectrum for General Bistatic SAR Processing , 2008, IEEE Geoscience and Remote Sensing Letters.

[28]  Kenneth James,et al.  The RADARSAT-2&3 topographic mission: an overview , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[29]  Otmar Loffeld,et al.  Focusing of General Bistatic SAR Configuration Data With 2-D Inverse Scaled FFT , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Xingzhao Liu,et al.  An Extended Nonlinear Chirp-Scaling Algorithm for Focusing Large-Baseline Azimuth-Invariant Bistatic SAR Data , 2009, IEEE Geoscience and Remote Sensing Letters.

[31]  Haiguang Yang,et al.  A NEW LOOK AT THE POINT TARGET REFERENCE SPECTRUM FOR BISTATIC SAR , 2011 .

[32]  Robert Wang,et al.  Extending Loffeld's bistatic formula for the general bistatic SAR configuration , 2010 .

[33]  Joachim H. G. Ender,et al.  Bistatic SAR Processing and Experiments , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Ian G. Cumming,et al.  Processing of Azimuth-Invariant Bistatic SAR Data Using the Range Doppler Algorithm , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Mengdao Xing,et al.  Focusing Parallel Bistatic SAR Data Using the Analytic Transfer Function in the Wavenumber Domain , 2007, IEEE Transactions on Geoscience and Remote Sensing.