On the regularization of Lifshitz-type field theories
暂无分享,去创建一个
[1] A. Trombettoni,et al. Topological phase transitions in four dimensions , 2020, Nuclear Physics B.
[2] A. Bonanno,et al. On exact proper time Wilsonian RG flows , 2019, The European Physical Journal C.
[3] D. Zappalà. Isotropic Lifshitz scaling in four dimensions , 2019, International Journal of Geometric Methods in Modern Physics.
[4] P. Nardi. Critical , 2018, Theoretical Models and Processes of Literacy.
[5] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[6] D. Zappalà. Indications of isotropic Lifshitz points in four dimensions , 2018, Physical Review D.
[7] S. P. de Alwis,et al. Exact RG flow equations and quantum gravity , 2017, 1707.09298.
[8] D. Zappalà. Isotropic Lifshitz point in the O(N) Theory , 2017, 1703.00791.
[9] A. Bonanno,et al. Isotropic Lifshitz critical behavior from the functional renormalization group , 2014, 1412.7046.
[10] J. Nascimento,et al. On the effective potential for Horava-Lifshitz-like theories , 2011, 1112.2081.
[11] Kengo Kikuchi. Restoration of Lorentz Symmetry for Lifshitz-Type Scalar Theory , 2011, 1111.6075.
[12] E. Son,et al. Effective potentials in the Lifshitz scalar field theory , 2011, 1105.5194.
[13] Wontae Kim,et al. Lifshitz scalar, brick wall method, and GUP in Ho\v{r}ava-Lifshitz Gravity , 2010, 1007.1824.
[14] Wontae Kim,et al. Lifshitz scalar, brick wall method, and generalized uncertainty principle in Hořava-Lifshitz gravity , 2010 .
[15] E. Son,et al. Smooth cosmological phase transition in the Hořava-Lifshitz gravity , 2010, 1003.3055.
[16] M. Serone,et al. Renormalization group in Lifshitz-type theories , 2009, 0906.3477.
[17] N. Ohta,et al. Thermodynamics of black holes in Horava-Lifshitz gravity , 2009, 0905.0751.
[18] R. Brandenberger. Matter bounce in Horava-Lifshitz cosmology , 2009, 0904.2835.
[19] Petr Hořava. Quantum Gravity at a Lifshitz Point , 2009, 0901.3775.
[20] Petr Hořava. Quantum Criticality and Yang-Mills Gauge Theory , 2008, 0811.2217.
[21] A. Bonanno,et al. Spontaneous symmetry breaking and proper-time flow equations , 2004 .
[22] A.Bonanno,et al. Spontaneous Symmetry Breaking and Proper-Time Flow Equations , 2004, hep-th/0403176.
[23] D. Litim,et al. Wilsonian flows and background fields , 2002, hep-th/0208216.
[24] H. Diehl. Critical Behavior at M-Axial Lifshitz Points , 2002 .
[25] H. Diehl,et al. Critical, crossover and correction-to-scaling exponents for isotropic Lifshitz points to order (8 ? d)2 , 2002, cond-mat/0204267.
[26] D. Litim,et al. Completeness and consistency of renormalisation group flows , 2002, hep-th/0202188.
[27] A. Bonanno,et al. Towards an accurate determination of the critical exponents with the renormalization group flow equations , 2000, hep-th/0010095.
[28] B. Schaefer,et al. RENORMALIZATION GROUP FLOW EQUATIONS AND THE PHASE TRANSITION IN O(N)-MODELS , 2000, hep-ph/0007098.
[29] S. Liao. Operator cutoff regularization and renormalization group in Yang-Mills theory , 1995, hep-th/9511046.
[30] Liao,et al. Connection between momentum cutoff and operator cutoff regularizations. , 1995, Physical review. D, Particles and fields.
[31] M. Oleszczuk. A symmetry-preserving cut-off regularization , 1994 .
[32] W. Selke,et al. The ANNNI model — Theoretical analysis and experimental application , 1988 .
[33] S. Shtrikman,et al. Critical Behavior at the Onset of k --> -Space Instability on the lamda Line , 1975 .
[34] Julian Schwinger,et al. On gauge invariance and vacuum polarization , 1951 .
[35] S. Sofia,et al. Towards an accurate determination of the critical exponents with the Renormalization Group flow equations , 2000 .
[36] R. Hornreich. The Lifshitz point: Phase diagrams and critical behavior , 1980 .