On the regularization of Lifshitz-type field theories

[1]  A. Trombettoni,et al.  Topological phase transitions in four dimensions , 2020, Nuclear Physics B.

[2]  A. Bonanno,et al.  On exact proper time Wilsonian RG flows , 2019, The European Physical Journal C.

[3]  D. Zappalà Isotropic Lifshitz scaling in four dimensions , 2019, International Journal of Geometric Methods in Modern Physics.

[4]  P. Nardi Critical , 2018, Theoretical Models and Processes of Literacy.

[5]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[6]  D. Zappalà Indications of isotropic Lifshitz points in four dimensions , 2018, Physical Review D.

[7]  S. P. de Alwis,et al.  Exact RG flow equations and quantum gravity , 2017, 1707.09298.

[8]  D. Zappalà Isotropic Lifshitz point in the O(N) Theory , 2017, 1703.00791.

[9]  A. Bonanno,et al.  Isotropic Lifshitz critical behavior from the functional renormalization group , 2014, 1412.7046.

[10]  J. Nascimento,et al.  On the effective potential for Horava-Lifshitz-like theories , 2011, 1112.2081.

[11]  Kengo Kikuchi Restoration of Lorentz Symmetry for Lifshitz-Type Scalar Theory , 2011, 1111.6075.

[12]  E. Son,et al.  Effective potentials in the Lifshitz scalar field theory , 2011, 1105.5194.

[13]  Wontae Kim,et al.  Lifshitz scalar, brick wall method, and GUP in Ho\v{r}ava-Lifshitz Gravity , 2010, 1007.1824.

[14]  Wontae Kim,et al.  Lifshitz scalar, brick wall method, and generalized uncertainty principle in Hořava-Lifshitz gravity , 2010 .

[15]  E. Son,et al.  Smooth cosmological phase transition in the Hořava-Lifshitz gravity , 2010, 1003.3055.

[16]  M. Serone,et al.  Renormalization group in Lifshitz-type theories , 2009, 0906.3477.

[17]  N. Ohta,et al.  Thermodynamics of black holes in Horava-Lifshitz gravity , 2009, 0905.0751.

[18]  R. Brandenberger Matter bounce in Horava-Lifshitz cosmology , 2009, 0904.2835.

[19]  Petr Hořava Quantum Gravity at a Lifshitz Point , 2009, 0901.3775.

[20]  Petr Hořava Quantum Criticality and Yang-Mills Gauge Theory , 2008, 0811.2217.

[21]  A. Bonanno,et al.  Spontaneous symmetry breaking and proper-time flow equations , 2004 .

[22]  A.Bonanno,et al.  Spontaneous Symmetry Breaking and Proper-Time Flow Equations , 2004, hep-th/0403176.

[23]  D. Litim,et al.  Wilsonian flows and background fields , 2002, hep-th/0208216.

[24]  H. Diehl Critical Behavior at M-Axial Lifshitz Points , 2002 .

[25]  H. Diehl,et al.  Critical, crossover and correction-to-scaling exponents for isotropic Lifshitz points to order (8 ? d)2 , 2002, cond-mat/0204267.

[26]  D. Litim,et al.  Completeness and consistency of renormalisation group flows , 2002, hep-th/0202188.

[27]  A. Bonanno,et al.  Towards an accurate determination of the critical exponents with the renormalization group flow equations , 2000, hep-th/0010095.

[28]  B. Schaefer,et al.  RENORMALIZATION GROUP FLOW EQUATIONS AND THE PHASE TRANSITION IN O(N)-MODELS , 2000, hep-ph/0007098.

[29]  S. Liao Operator cutoff regularization and renormalization group in Yang-Mills theory , 1995, hep-th/9511046.

[30]  Liao,et al.  Connection between momentum cutoff and operator cutoff regularizations. , 1995, Physical review. D, Particles and fields.

[31]  M. Oleszczuk A symmetry-preserving cut-off regularization , 1994 .

[32]  W. Selke,et al.  The ANNNI model — Theoretical analysis and experimental application , 1988 .

[33]  S. Shtrikman,et al.  Critical Behavior at the Onset of k --> -Space Instability on the lamda Line , 1975 .

[34]  Julian Schwinger,et al.  On gauge invariance and vacuum polarization , 1951 .

[35]  S. Sofia,et al.  Towards an accurate determination of the critical exponents with the Renormalization Group flow equations , 2000 .

[36]  R. Hornreich The Lifshitz point: Phase diagrams and critical behavior , 1980 .