Absorption cross sections and Auger recombination lifetimes in inverted core-shell nanocrystals: Implications for lasing performance

We study inverted core-shell nanocrystals (NCs), in which a core of a wide-gap semiconductor (ZnSe) is overcoated with a shell of a narrower gap material (CdSe). Depending on the core radius and the shell thickness, these NCs can exhibit either type-I or type-II behavior. We show that these heterostructures can be used to significantly increase the absorption cross sections and simultaneously decrease the efficiency of Auger recombination compared to monocomponent CdSe NCs emitting at the same wavelength. These properties enhance the lasing performance of inverted core-shell structures and allow, in particular, efficient amplified spontaneous emission in the range of blue colors.

[1]  J. Hollingsworth,et al.  Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods. , 2003, Physical review letters.

[2]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[3]  P. Anikeeva,et al.  Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime , 2004 .

[4]  A. Malko,et al.  Multiparticle interactions and stimulated emission in chemically synthesized quantum dots , 2002 .

[5]  Duncan W. McBranch,et al.  Femtosecond 1P-to-1S electron relaxation in strongly confined semiconductor nanocrystals , 1998 .

[6]  Moungi G. Bawendi,et al.  From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids , 2002 .

[7]  Vikram C. Sundar,et al.  Color-selective semiconductor nanocrystal laser , 2002 .

[8]  V. Klimov Semiconductor and Metal Nanocrystals , 2004 .

[9]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[10]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[11]  A. Malko,et al.  High‐Performance, Quantum Dot Nanocomposites for Nonlinear Optical and Optical Gain Applications , 2003 .

[12]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[13]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[14]  Klimov,et al.  Quantization of multiparticle auger rates in semiconductor quantum dots , 2000, Science.

[15]  S. Ivanov,et al.  Inverted Core/Shell Nanocrystals Continuously Tunable between Type-I and Type-II Localization Regimes , 2004 .

[16]  Victor I. Klimov,et al.  Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties , 2007 .

[17]  D. Piomelli,et al.  Control of pain initiation by endogenous cannabinoids , 1998, Nature.

[18]  Vikram C. Sundar,et al.  Room-Temperature, Tunable Gain Media from Novel II–VI Nanocrystal–Titania Composite Matrices , 2002 .

[19]  Victor I. Klimov,et al.  Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime , 2003 .

[20]  U. Banin,et al.  Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes , 2002, Science.

[21]  V. Bulović,et al.  Electroluminescence from single monolayers of nanocrystals in molecular organic devices , 2002, Nature.

[22]  Duncan W. McBranch,et al.  Electron and hole relaxation pathways in semiconductor quantum dots , 1999 .

[23]  A. Malko,et al.  Ultrafast dynamic holography in nanocrystal solids , 2001 .

[24]  M. Bawendi,et al.  ULTRAFAST DYNAMICS OF INTER- AND INTRABAND TRANSITIONS IN SEMICONDUCTOR NANOCRYSTALS : IMPLICATIONS FOR QUANTUM-DOT LASERS , 1999 .

[25]  A. Malko,et al.  Light amplification in semiconductor nanocrystals: Quantum rods versus quantum dots , 2003 .

[26]  Uri Banin,et al.  Size-dependent tunneling and optical spectroscopy of CdSe quantum rods. , 2002, Physical review letters.

[27]  W. Webb,et al.  Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo , 2003, Science.

[28]  M. Bawendi,et al.  Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. , 2003, Journal of the American Chemical Society.

[29]  Victor I. Klimov,et al.  Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals , 2000 .

[30]  A. Malko,et al.  Interplay between optical gain and photoinduced absorption in CdSe nanocrystals , 2004 .

[31]  M. Bawendi,et al.  Electroluminescence from CdSe quantum‐dot/polymer composites , 1995 .

[32]  S. Gaponenko Optical properties of semiconductor nanocrystals , 1998 .

[33]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[34]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[35]  Uri Banin,et al.  Lasing from Semiconductor Quantum Rods in a Cylindrical Microcavity , 2002 .

[36]  P. Guyot-Sionnest,et al.  Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals , 1998 .

[37]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.