Radiometric Information from Airborne Laser Scanning for Archaeological Prospection
暂无分享,去创建一个
[1] W. Wagner,et al. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner , 2006 .
[2] Bernhard Höfle,et al. Calibration of full-waveform airborne laser scanning data for object classification , 2008, SPIE Defense + Commercial Sensing.
[3] Wolfgang Neubauer,et al. Long-term integrated archaeological prospection at the Roman town of Carnuntum/Austria , 2012 .
[4] C. Briese,et al. Archaeological prospection of forested areas using full-waveform airborne laser scanning , 2008 .
[5] Juha Hyyppä,et al. Radiometric Calibration of LIDAR Intensity With Commercially Available Reference Targets , 2009, IEEE Transactions on Geoscience and Remote Sensing.
[6] George Vosselman,et al. Airborne and terrestrial laser scanning , 2011, Int. J. Digit. Earth.
[7] Keith Challis,et al. The role of lidar intensity data in interpreting environmental and cultural archaeological landscapes , 2013 .
[8] Christian Gugl,et al. Die Canabae von Carnuntum – eine Modellstudie der Erforschung römischer Lagervorstädte : Von der Luftbildprospektion zur siedlungsarchäologischen Synthese , 2013 .
[9] Norbert Pfeifer,et al. RADIOMETRIC CALIBRATION OF MULTI-WAVELENGTH AIRBORNE LASER SCANNING DATA , 2012 .
[10] Terje Gobakken,et al. Estimating forest growth using canopy metrics derived from airborne laser scanner data , 2005 .
[11] Norbert Pfeifer,et al. Optimisation of LiDAR derived terrain models for river flow modelling , 2008 .
[12] N. Pfeifer,et al. Correction of laser scanning intensity data: Data and model-driven approaches , 2007 .
[13] D. Cowley,et al. Interpreting archaeological topography : airborne laser scanning, 3D data and ground observation , 2013 .
[14] Norbert Haala,et al. Dense Multi-Stereo Matching for High Quality Digital Elevation Models , 2012 .
[15] Harri Kaartinen,et al. Effect of Target Moisture on Laser Scanner Intensity , 2010, IEEE Transactions on Geoscience and Remote Sensing.
[16] K. Kraus,et al. FROM SINGLE-PULSE TO FULL-WAVEFORM AIRBORNE LASER SCANNERS: POTENTIAL AND PRACTICAL CHALLENGES , 2004 .
[17] C. Song,et al. Urban 3D GIS From LiDAR and digital aerial images , 2004, Comput. Geosci..
[18] Markus Hollaus,et al. Airborne Laser Scanning of Forest Stem Volume in a Mountainous Environment , 2007, Sensors (Basel, Switzerland).
[19] Werner Benger,et al. Reconstructing Power Cables From LIDAR Data Using Eigenvector Streamlines of the Point Distribution Tensor Field , 2012, J. WSCG.
[20] B. Höfle,et al. Topographic airborne LiDAR in geomorphology: A technological perspective , 2011 .
[21] D. Cowley. Remote Sensing for Archaeological Heritage Management , 2011 .
[22] Keith Challis,et al. Assessing the preservation potential of temperate, lowland alluvial sediments using airborne lidar intensity , 2011 .
[23] Wolfgang Neubauer,et al. Georadar in the Roman civil town Carnuntum, Austria: an approach for archaeological interpretation of GPR data , 2002 .
[24] Wolfgang Wagner,et al. Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts , 2010 .
[25] A. Jelalian. Laser radar systems , 1980 .
[26] Martin Pfennigbauer,et al. MULTI-WAVELENGTH AIRBORNE LASER SCANNING FOR ARCHAEOLOGICAL PROSPECTION , 2013 .
[27] Werner Jobst,et al. Provinzhauptstadt Carnuntum : Österreichs grösste archäologische Landschaft , 1983 .
[28] Frank Vermeulen,et al. Mapping by matching: a computer vision-based approach to fast and accurate georeferencing of archaeological aerial photographs , 2012 .