Radiometric Information from Airborne Laser Scanning for Archaeological Prospection

Airborne laser scanning (ALS) is widely used for the sampling of large landscapes for different application areas. Since several years ALS data is also often used in archaeological prospection, e.g. in order to detect archaeological features beneath the vegetation canopy cover. For most of the applications only the geometric information provided by ALS is utilized. However, next to geometric information ALS provides radiometric information for each acquired point. For its practical usability radiometric calibration is essential. This contribution presents, next to the basic theory, a radiometric calibration workflow for ALS data. As a result calibrated spectral information is added to the ALS point cloud. This information can be used to generate images displaying reflectance at the wavelength of the ALS sensor. The presented calibration workflow is furthermore applied to different ALS missions carried out in the study area Carnuntum, Austria. Due to the usage of ALS sensors with different laser wavelength...

[1]  W. Wagner,et al.  Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner , 2006 .

[2]  Bernhard Höfle,et al.  Calibration of full-waveform airborne laser scanning data for object classification , 2008, SPIE Defense + Commercial Sensing.

[3]  Wolfgang Neubauer,et al.  Long-term integrated archaeological prospection at the Roman town of Carnuntum/Austria , 2012 .

[4]  C. Briese,et al.  Archaeological prospection of forested areas using full-waveform airborne laser scanning , 2008 .

[5]  Juha Hyyppä,et al.  Radiometric Calibration of LIDAR Intensity With Commercially Available Reference Targets , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[6]  George Vosselman,et al.  Airborne and terrestrial laser scanning , 2011, Int. J. Digit. Earth.

[7]  Keith Challis,et al.  The role of lidar intensity data in interpreting environmental and cultural archaeological landscapes , 2013 .

[8]  Christian Gugl,et al.  Die Canabae von Carnuntum – eine Modellstudie der Erforschung römischer Lagervorstädte : Von der Luftbildprospektion zur siedlungsarchäologischen Synthese , 2013 .

[9]  Norbert Pfeifer,et al.  RADIOMETRIC CALIBRATION OF MULTI-WAVELENGTH AIRBORNE LASER SCANNING DATA , 2012 .

[10]  Terje Gobakken,et al.  Estimating forest growth using canopy metrics derived from airborne laser scanner data , 2005 .

[11]  Norbert Pfeifer,et al.  Optimisation of LiDAR derived terrain models for river flow modelling , 2008 .

[12]  N. Pfeifer,et al.  Correction of laser scanning intensity data: Data and model-driven approaches , 2007 .

[13]  D. Cowley,et al.  Interpreting archaeological topography : airborne laser scanning, 3D data and ground observation , 2013 .

[14]  Norbert Haala,et al.  Dense Multi-Stereo Matching for High Quality Digital Elevation Models , 2012 .

[15]  Harri Kaartinen,et al.  Effect of Target Moisture on Laser Scanner Intensity , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[16]  K. Kraus,et al.  FROM SINGLE-PULSE TO FULL-WAVEFORM AIRBORNE LASER SCANNERS: POTENTIAL AND PRACTICAL CHALLENGES , 2004 .

[17]  C. Song,et al.  Urban 3D GIS From LiDAR and digital aerial images , 2004, Comput. Geosci..

[18]  Markus Hollaus,et al.  Airborne Laser Scanning of Forest Stem Volume in a Mountainous Environment , 2007, Sensors (Basel, Switzerland).

[19]  Werner Benger,et al.  Reconstructing Power Cables From LIDAR Data Using Eigenvector Streamlines of the Point Distribution Tensor Field , 2012, J. WSCG.

[20]  B. Höfle,et al.  Topographic airborne LiDAR in geomorphology: A technological perspective , 2011 .

[21]  D. Cowley Remote Sensing for Archaeological Heritage Management , 2011 .

[22]  Keith Challis,et al.  Assessing the preservation potential of temperate, lowland alluvial sediments using airborne lidar intensity , 2011 .

[23]  Wolfgang Neubauer,et al.  Georadar in the Roman civil town Carnuntum, Austria: an approach for archaeological interpretation of GPR data , 2002 .

[24]  Wolfgang Wagner,et al.  Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts , 2010 .

[25]  A. Jelalian Laser radar systems , 1980 .

[26]  Martin Pfennigbauer,et al.  MULTI-WAVELENGTH AIRBORNE LASER SCANNING FOR ARCHAEOLOGICAL PROSPECTION , 2013 .

[27]  Werner Jobst,et al.  Provinzhauptstadt Carnuntum : Österreichs grösste archäologische Landschaft , 1983 .

[28]  Frank Vermeulen,et al.  Mapping by matching: a computer vision-based approach to fast and accurate georeferencing of archaeological aerial photographs , 2012 .