Accelerated Evolutionary Rate of the Myoglobin Gene in Long-Diving Whales

[1]  J. Opazo,et al.  How to Make a Dolphin: Molecular Signature of Positive Selection in Cetacean Genome , 2013, PloS one.

[2]  Andrew R Cossins,et al.  Supplementary Materials for Evolution of Mammalian Diving Capacity Traced by Myoglobin Net Surface Charge , 2013 .

[3]  Adrian W. R. Serohijos,et al.  Positively Selected Sites in Cetacean Myoglobins Contribute to Protein Stability , 2013, PLoS Comput. Biol..

[4]  F. Hoffmann,et al.  Resolution of the laurasiatherian phylogeny: evidence from genomic data. , 2012, Molecular phylogenetics and evolution.

[5]  D. Wildman,et al.  Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown , 2012, Proceedings of the Royal Society B: Biological Sciences.

[6]  E. Lessa,et al.  The evolution of mitochondrial genomes in subterranean caviomorph rodents: adaptation against a background of purifying selection. , 2011, Molecular phylogenetics and evolution.

[7]  Ziheng Yang,et al.  Statistical properties of the branch-site test of positive selection. , 2011, Molecular biology and evolution.

[8]  U. Flögel,et al.  Unmasking the Janus face of myoglobin in health and disease , 2010, Journal of Experimental Biology.

[9]  Ya-ping Zhang,et al.  Adaptive evolution of energy metabolism genes and the origin of flight in bats , 2010, Proceedings of the National Academy of Sciences.

[10]  C. Muizon L’origine et l’histoire évolutive des Cétacés , 2009 .

[11]  I. Agnarsson,et al.  The phylogeny of Cetartiodactyla: the importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies. , 2008, Molecular phylogenetics and evolution.

[12]  M. Gladwin,et al.  Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury , 2008, Proceedings of the National Academy of Sciences.

[13]  A. Cossins,et al.  Physiology: Myoglobin's new clothes , 2008, Nature.

[14]  R. W. Baird,et al.  Diel variation in beaked whale diving behavior , 2008 .

[15]  B. Hallström,et al.  Resolution among major placental mammal interordinal relationships with genome data imply that speciation influenced their earliest radiations , 2008, BMC Evolutionary Biology.

[16]  E. H. Margulies,et al.  Life-history traits drive the evolutionary rates of mammalian coding and noncoding genomic elements , 2007, Proceedings of the National Academy of Sciences.

[17]  Leila A. Mamirova,et al.  Accumulation of slightly deleterious mutations in mitochondrial protein-coding genes of large versus small mammals , 2007, Proceedings of the National Academy of Sciences.

[18]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[19]  J. Ramirez,et al.  Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. , 2007, Annual review of physiology.

[20]  P. Tyack,et al.  Extreme diving of beaked whales , 2006, Journal of Experimental Biology.

[21]  Mark P. Johnson,et al.  Deep-diving foraging behaviour of sperm whales (Physeter macrocephalus). , 2006, The Journal of animal ecology.

[22]  R. Nielsen,et al.  Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. , 2005, Molecular biology and evolution.

[23]  F. Melo,et al.  Adaptive evolution of the insulin gene in caviomorph rodents. , 2005, Molecular biology and evolution.

[24]  P. Butler Metabolic regulation in diving birds and mammals , 2004, Respiratory Physiology & Neurobiology.

[25]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[26]  Justin C. Fay,et al.  Sequence divergence, functional constraint, and selection in protein evolution. , 2003, Annual review of genomics and human genetics.

[27]  Keith A. Crandall,et al.  TreeSAAP: Selection on Amino Acid Properties using phylogenetic trees , 2003, Bioinform..

[28]  R. W. Davis,et al.  Heterogeneity of myoglobin distribution in the locomotory muscles of five cetacean species. , 2001, The Journal of experimental biology.

[29]  M. Gerstein,et al.  Measuring Shifts in Function and Evolutionary Opportunity Using Variability Profiles: A Case Study of the Globins , 2000, Journal of Molecular Evolution.

[30]  D. Burkin,et al.  Laminin and alpha7beta1 integrin regulate agrin-induced clustering of acetylcholine receptors. , 2000, Journal of cell science.

[31]  P. Ponganis,et al.  Myoglobin in pelagic small cetaceans. , 1999, The Journal of experimental biology.

[32]  A. Dean,et al.  The structural basis of molecular adaptation. , 1998, Molecular biology and evolution.

[33]  David R. Jones,et al.  Physiology of diving of birds and mammals. , 1997, Physiological reviews.

[34]  S. Boxer,et al.  Anatomy and dynamics of a ligand-binding pathway in myoglobin: the roles of residues 45, 60, 64, and 68. , 1994, Biochemistry.

[35]  S. Boxer,et al.  Discovery of new ligand binding pathways in myoglobin by random mutagenesis , 1994, Nature Structural Biology.

[36]  M. Michael Gromiha,et al.  Relationship Between Amino Acid Properties and Protein Compressibility , 1993 .

[37]  S. Boxer,et al.  Ligand and proton exchange dynamics in recombinant human myoglobin mutants. , 1989, Journal of molecular biology.

[38]  T. Venanzi Hydrophobicity parameters and the bitter taste of L-amino acids. , 1984, Journal of theoretical biology.

[39]  M. Charton,et al.  The dependence of the Chou-Fasman parameters on amino acid side chain structure. , 1983, Journal of theoretical biology.

[40]  M. Weiss,et al.  Molecular Evolution Above the Species Level: Branching Pattern, Rates, and Mechanisms , 1982 .

[41]  A. Friday,et al.  On the evolution of myoglobin. , 1978, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[42]  D. Burkin,et al.  Laminin and α 7 β 1 integrin regulate agrin-induced clustering of acetylcholine receptors , 2000 .

[43]  P. Ponganis,et al.  The physiological basis of diving to depth: birds and mammals. , 1998, Annual review of physiology.

[44]  G. di Prisco,et al.  Oxygen transport in extreme environments. , 1991, Trends in biochemical sciences.