From a quantum-electrodynamical light–matter description to novel spectroscopies

Insights from spectroscopic experiments led to the development of quantum mechanics as the common theoretical framework for describing the physical and chemical properties of atoms, molecules and materials. Later, a full quantum description of charged particles, electromagnetic radiation and special relativity was developed, leading to quantum electrodynamics (QED). This is, to our current understanding, the most complete theory describing photon–matter interactions in correlated many–body systems. In the low-energy regime, simplified models of QED have been developed to describe and analyse spectra over a wide spatiotemporal range as well as physical systems. In this Review, we highlight the interrelations and limitations of such theoretical models, thereby showing that they arise from low-energy simplifications of the full QED formalism, in which antiparticles and the internal structure of the nuclei are neglected. Taking molecular systems as an example, we discuss how the breakdown of some simplifications of low-energy QED challenges our conventional understanding of light–matter interactions. In addition to high-precision atomic measurements and simulations of particle physics problems in solid-state systems, new theoretical features that account for collective QED effects in complex interacting many-particle systems could become a material-based route to further advance our current understanding of light–matter interactions. Quantum electrodynamics (QED) is the most complete theoretical framework to date to complement experimental spectroscopies in chemistry. Owing to its complexity, several approximations are needed in order to be able to apply QED in practice. This Review highlights how the breakdown of some of these approximations challenges our understanding of light–matter interactions and discusses how new theoretical developments can help to overcome these approximations.

[1]  Kazuo Ueda,et al.  Phenomenological theory of unconventional superconductivity , 1991 .

[2]  R. Dreizler,et al.  Density Functional Theory: An Advanced Course , 2011 .

[3]  P. Mulser,et al.  High Power Laser-Matter Interaction , 2010 .

[4]  A. Einstein On the Quantum Theory of Radiation , 1983 .

[5]  B. Mahon How Maxwell's equations came to light , 2014, Nature Photonics.

[6]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[7]  V. Jaksic,et al.  Spectral Theory of Pauli–Fierz Operators , 2001 .

[8]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[9]  M. Reiher,et al.  Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science , 2009 .

[10]  M. Chergui,et al.  Ultrafast X-ray absorption spectroscopy. , 2004, Chemical reviews.

[11]  E. Couderc,et al.  The quasiparticle zoo , 2016, Nature Physics.

[12]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[13]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[14]  Savage,et al.  One-atom lasers. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[15]  Jeremy J. Baumberg,et al.  Single-molecule strong coupling at room temperature in plasmonic nanocavities , 2016, Nature.

[16]  Alain Aspect,et al.  Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light , 2010 .

[17]  R. Bensasson,et al.  Inorganic biochemistry. An introduction , 1998 .

[18]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[19]  Á. Rubio,et al.  Light–matter interaction in the long-wavelength limit: no ground-state without dipole self-energy , 2018, 1807.03635.

[20]  T. Ebbesen,et al.  Enhanced Raman Scattering from Vibro-Polariton Hybrid States , 2015, Angewandte Chemie.

[21]  D. Andrews Physicality of the Photon , 2013 .

[22]  A. Marini,et al.  An unified theory of quantised electrons, phonons and photons out-of-equilibrium: a simplified {\em ab-initio} approach based on the Generalised Baym-Kadanoff ansatz , 2015, 1512.07490.

[23]  E. Engel,et al.  Density Functional Theory , 2011 .

[24]  R. Bishop,et al.  Recent Progress in MANY-BODY THEORIES , 1988 .

[25]  Sudden approximation in photoemission and beyond , 2001, cond-mat/0109517.

[26]  R. Saykally,et al.  Soft X-ray Absorption Spectroscopy of Liquids and Solutions. , 2017, Chemical reviews.

[27]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[28]  A. D. Boozer,et al.  Trapped atoms in cavity QED: coupling quantized light and matter , 2005 .

[29]  E. Gross,et al.  Fundamentals of time-dependent density functional theory , 2012 .

[30]  S. Mukamel,et al.  Stimulated Raman Spectroscopy with Entangled Light: Enhanced Resolution and Pathway Selection , 2014, The journal of physical chemistry letters.

[31]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[32]  R. Xu,et al.  HEOM‐QUICK: a program for accurate, efficient, and universal characterization of strongly correlated quantum impurity systems , 2016 .

[33]  B. Taylor,et al.  CODATA Recommended Values of the Fundamental Physical Constants: 2010 | NIST , 2005, 1203.5425.

[34]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[35]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[36]  K. Yabana,et al.  Attosecond nonlinear polarization and light–matter energy transfer in solids , 2016, Nature.

[37]  J. Tauc,et al.  The Optical Properties of Solids , 1967 .

[38]  S. Mukamel,et al.  Optically Excited Entangled States in Organic Molecules Illuminate the Dark. , 2013, The journal of physical chemistry letters.

[39]  P. Drummond,et al.  Nonclassical Excitation in Spectroscopy with Squeezed Light , 1997 .

[40]  L. Cooper,et al.  Theory of superconductivity , 1957 .

[41]  O. Keller Quantum Theory of Near-Field Electrodynamics , 2011 .

[42]  Á. Rubio,et al.  Monitoring Electron-Photon Dressing in WSe2. , 2016, Nano letters.

[43]  F. Krausz Attosecond Physics , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[44]  Edward Nelson,et al.  Interaction of Nonrelativistic Particles with a Quantized Scalar Field , 1964 .

[45]  J. Dereziński,et al.  Mathematics of Quantization and Quantum Fields , 2013 .

[46]  M. Brezinski Optical Coherence Tomography: Principles and Applications , 2006 .

[47]  Jean-Michel Raimond,et al.  Cavity Quantum Electrodynamics , 1993, Quantum Dynamics of Simple Systems.

[48]  U. Manthe Wavepacket dynamics and the multi-configurational time-dependent Hartree approach , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[49]  H. Appel,et al.  Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State , 2017, ACS photonics.

[50]  Shaul Mukamel,et al.  Nonlinear optics of semiconductor and molecular nanostructures; a common perspective , 1998 .

[51]  S. Kummel,et al.  Ionic and electronic structure of sodium clusters up to N=59 , 2000, physics/0007018.

[52]  S. Svanberg,et al.  Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications , 1992 .

[53]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[54]  Angel Rubio,et al.  Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials , 2016, Nature Communications.

[55]  I Bloch,et al.  Observation of Correlated Particle-Hole Pairs and String Order in Low-Dimensional Mott Insulators , 2011, Science.

[56]  Solid-state spectroscopy , 1998 .

[57]  H. Appel,et al.  Kohn–Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space , 2015, Proceedings of the National Academy of Sciences.

[58]  Eric Poisson,et al.  Dynamics of Charged Particles and their Radiation Field , 2006 .

[59]  Abraham Nitzan,et al.  Optics of exciton-plasmon nanomaterials , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[60]  A. Cavalleri,et al.  Reports on Progress in Physics REPORT ON PROGRESS Non-equilibrium control of complex solids by nonlinear phononics , 2016 .

[61]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[62]  F. García-Vidal,et al.  Suppressing photochemical reactions with quantized light fields , 2016, Nature Communications.

[63]  David G Lidzey,et al.  Polaritons in Living Systems: Modifying Energy Landscapes in Photosynthetic Organisms Using a Photonic Structure , 2017, 1702.01705.

[64]  S. D. Ivanov,et al.  Exciton–vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates , 2015 .

[65]  Sauro Succi,et al.  Numerical methods for atomic quantum gases with applications to Bose–Einstein condensates and to ultracold fermions , 2004 .

[66]  Peter Lodahl,et al.  Strongly modified plasmon-matter interaction with mesoscopic quantum emitters , 2010, 1011.5669.

[67]  Yu-An Chen,et al.  Density matrix renormalization group , 2014 .

[68]  Markus Reiher,et al.  Communication: four-component density matrix renormalization group. , 2013, The Journal of chemical physics.

[69]  Detlef Hommel,et al.  Superradiance of quantum dots , 2007 .

[70]  Stephan W Koch,et al.  Quantum theory of the optical and electronic properties of semiconductors, fifth edition , 2009 .

[71]  Barrera,et al.  Electromagnetic response of systems with spatial fluctuations. I. General formalism. , 1985, Physical review. B, Condensed matter.

[72]  M. Wilchek,et al.  Fluorescence studies with tryptophyl peptides. , 1963, Biochemistry.

[73]  Darrick E. Chang,et al.  Quantum nonlinear optics — photon by photon , 2014, Nature Photonics.

[74]  Alán Aspuru-Guzik,et al.  A Nanophotonic Structure Containing Living Photosynthetic Bacteria. , 2017, Small.

[75]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[76]  J. Kong,et al.  Observation of Intervalley Biexcitonic Optical Stark Effect in Monolayer WS2. , 2016, Nano letters.

[77]  K. Cheng Theory of Superconductivity , 1948, Nature.

[78]  N F Ramsey Experiments with separated oscillatory fields and hydrogen masers. , 1990, Science.

[79]  Tim Byrnes,et al.  Exciton–polariton condensates , 2014, Nature Physics.

[80]  T. Ebbesen,et al.  Modifying chemical landscapes by coupling to vacuum fields. , 2012, Angewandte Chemie.

[81]  G. Strinati,et al.  Solution of the Bogoliubov–de Gennes equations at zero temperature throughout the BCS–BEC crossover: Josephson and related effects , 2009, 0911.4026.

[82]  Maki,et al.  Linear and nonlinear optical measurements of the Lorentz local field. , 1991, Physical review letters.

[83]  David Abend,et al.  The Kondo Problem To Heavy Fermions , 2016 .

[84]  Yukihiro Ozaki,et al.  Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering , 2014 .

[85]  E. Hinds,et al.  A search for varying fundamental constants using hertz-level frequency measurements of cold CH molecules , 2013, Nature Communications.

[86]  Leon Balents,et al.  My title , 2013 .

[87]  G. Cohen,et al.  Decoherence and lead-induced interdot coupling in nonequilibrium electron transport through interacting quantum dots: A hierarchical quantum master equation approach , 2013, 1309.1170.

[88]  Ferenc Krausz,et al.  Attosecond metrology: from electron capture to future signal processing , 2014, Nature Photonics.

[89]  David L. Andrews,et al.  Virtual photons, dipole fields and energy transfer: a quantum electrodynamical approach , 2004 .

[90]  D. Bauer,et al.  Time-dependent Kohn-Sham approach to quantum electrodynamics , 2010, 1011.4162.

[91]  C. Ciuti Quantum fluids of light , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[92]  P. Courteille,et al.  Collective strong coupling of cold potassium atoms in a ring cavity , 2016, 1608.06725.

[93]  S. Fahy Quantum Monte Carlo Methods , 1996 .

[94]  Preparation of stationary Fock states in a one-atom Raman laser. , 1994, Physical review letters.

[95]  T. Thirunamachandran,et al.  Molecular quantum electrodynamics : an introduction to radiation-molecule interactions , 1998 .

[96]  Peter J. Mohr,et al.  CODATA Recommended Values of the Fundamental Physical Constants (version 4.0) , 2003 .

[97]  Alexey V. Gorshkov,et al.  Attractive photons in a quantum nonlinear medium , 2013, Nature.

[98]  Y. Tanimura Stochastic Liouville, Langevin, Fokker–Planck, and Master Equation Approaches to Quantum Dissipative Systems , 2006 .

[99]  M. Fox Optical Properties of Solids , 2010 .

[100]  T. Ebbesen,et al.  Energy Transfer between Spatially Separated Entangled Molecules , 2017, Angewandte Chemie.

[101]  Freeman J. Dyson,et al.  The Electromagnetic Shift of Energy Levels , 1948 .

[102]  M. Schmid Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .

[103]  S. Mukamel,et al.  Two-photon spectroscopy of excitons with entangled photons. , 2013, The Journal of chemical physics.

[104]  A. D. Boozer,et al.  Supplementary Information for Experimental Realization of a One-Atom Laser in the Regime of Strong Coupling , 2003 .

[105]  T. Hidaka,et al.  PAULI–FIERZ MODEL WITH KATO-CLASS POTENTIALS AND EXPONENTIAL DECAYS , 2010, 1003.5471.

[106]  Vignale,et al.  Density-functional theory in strong magnetic fields. , 1987, Physical review letters.

[107]  M. Salmhofer,et al.  Functional renormalization group approach to correlated fermion systems , 2011, 1105.5289.

[108]  Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD+ , 2016, Nature communications.

[109]  F. García-Vidal,et al.  Cavity-induced modifications of molecular structure in the strong coupling regime , 2015, 1506.03331.

[110]  J. Gubernatis,et al.  Quantum Monte Carlo Methods: Algorithms for Lattice Models , 2016 .

[111]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[112]  Gregor Weihs,et al.  Happy centenary, photon , 2005, Nature.

[113]  C. Felser,et al.  Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP , 2017, Nature.

[114]  Alán Aspuru-Guzik,et al.  Strong coupling between chlorosomes of photosynthetic bacteria and a confined optical cavity mode , 2014, Nature Communications.

[115]  Vladimir E. Korepin,et al.  The One-Dimensional Hubbard Model , 1994 .

[116]  Paul D. Lett,et al.  Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering , 2006 .

[117]  Stefan W. Hell,et al.  Nanoscopy with focused light , 2013, 2015 Conference on Lasers and Electro-Optics (CLEO).

[118]  Jason Alicea,et al.  New directions in the pursuit of Majorana fermions in solid state systems , 2012, Reports on progress in physics. Physical Society.

[119]  K. Vahala Optical microcavities , 2003, Nature.

[120]  H. Appel,et al.  Cavity Born–Oppenheimer Approximation for Correlated Electron–Nuclear-Photon Systems , 2016, Journal of chemical theory and computation.

[121]  E. Luppi,et al.  Ab initio second-order nonlinear optics in solids: Second-harmonic generation spectroscopy from time-dependent density-functional theory , 2010, 1006.2649.

[122]  Rashid Zia,et al.  Quantifying the magnetic nature of light emission , 2012, Nature Communications.

[123]  S. Haroche Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary , 2013 .

[124]  Yiqiao Tang,et al.  Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light , 2011, Science.

[125]  L. Novotný,et al.  Antennas for light , 2011 .

[126]  Rajagopal Time-dependent functional theory of coupled electron and electromagnetic fields in condensed-matter systems. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[127]  Jing Wang,et al.  Dynamical axion field in topological magnetic insulators , 2009, 0908.1537.

[128]  R. E Bishopt,et al.  Recent Progress in MANY-BODY THEORIES , 2022 .

[129]  江橋 節郎,et al.  Handbook on synchrotron radiation , 1983 .

[130]  Breakdown of the few-level approximation in collective systems , 2006, quant-ph/0611071.

[131]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[132]  G. F. Bertsch,et al.  Time-dependent density functional theory for strong electromagnetic fields in crystalline solids , 2011, 1112.2291.

[133]  M. Bonitz Quantum Kinetic Theory , 2015 .

[134]  W. Pauli,et al.  Zur Theorie der Emission langwelliger Lichtquanten , 1938 .

[135]  A. Tkatchenko,et al.  Materials perspective on Casimir and van der Waals interactions , 2015, 1509.03338.

[136]  O. Hemmers,et al.  Breakdown of the dipole approximation in soft-X-ray photoemission , 1999 .

[137]  The Aleph Collaboration,et al.  Precision electroweak measurements on the Z resonance , 2005, hep-ex/0509008.

[138]  D. Matsukevich,et al.  Quantum State Transfer Between Matter and Light , 1999, Science.

[139]  Gregory D Scholes,et al.  Long-range resonance energy transfer in molecular systems. , 2003, Annual review of physical chemistry.

[140]  I. Tokatly Time-dependent density functional theory for many-electron systems interacting with cavity photons. , 2013, Physical review letters.

[141]  G. L. Klimchitskaya,et al.  The Casimir force between real materials: Experiment and theory , 2009, 0902.4022.

[142]  R. Smith " Recent Progress in Many-Body Theories , 2022 .

[143]  T. Ebbesen,et al.  Coherent coupling of molecular resonators with a microcavity mode , 2014, Nature Communications.

[144]  John A. Pople,et al.  Nobel Lecture: Quantum chemical models , 1999 .

[145]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[146]  B. Taylor,et al.  CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.

[147]  Wenjian Liu Handbook of Relativistic Quantum Chemistry , 2016 .

[148]  U. Keller,et al.  Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond , 2016, Science.

[149]  D. Yarkony,et al.  Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics. , 2012, Annual review of physical chemistry.

[150]  Gross,et al.  Time-dependent density-functional theory for superconductors. , 1994, Physical review letters.

[151]  H. Appel,et al.  Optimized Effective Potential for Quantum Electrodynamical Time-Dependent Density Functional Theory. , 2014, Physical review letters.

[152]  H. Appel,et al.  Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry , 2016, Proceedings of the National Academy of Sciences.

[153]  P. Shukla,et al.  Nonlinear collective effects in photon-photon and photon-plasma interactions , 2006, hep-ph/0602123.

[154]  C. cohen-tannoudji,et al.  Photons and Atoms: Introduction to Quantum Electrodynamics , 1989 .

[155]  Daniel Neuhauser,et al.  Multiscale Maxwell-Schrodinger modeling: A split field finite-difference time-domain approach to molecular nanopolaritonics. , 2009, The Journal of chemical physics.

[156]  Gianluca Stefanucci,et al.  Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction , 2013 .

[157]  G Ruocco,et al.  Single-molecule imaging with x-ray free-electron lasers: dream or reality? , 2010, Physical review letters.

[158]  Torsten Werner,et al.  Laser Spectroscopy Basic Concepts And Instrumentation , 2016 .

[159]  Barrera,et al.  Electromagnetic response of systems with spatial fluctuations. II. Applications. , 1985, Physical Review B (Condensed Matter).

[160]  Q. Su,et al.  Computational renormalization scheme for quantum field theories , 2013 .

[161]  A. Messiah Quantum Mechanics , 1961 .

[162]  Xiao-Liang Qi,et al.  Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.

[163]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[164]  H. Bethe,et al.  Quantum Mechanics of One- and Two-Electron Atoms , 1957 .

[165]  M. Born Principles of Optics : Electromagnetic theory of propagation , 1970 .

[166]  S. Gray Theory and Modeling of Plasmonic Structures , 2013 .

[167]  Yijing Yan,et al.  Hierarchical Liouville-space approach for accurate and universal characterization of quantum impurity systems. , 2012, Physical review letters.

[168]  Joachim Reinhardt,et al.  Quantum electrodynamics of strong fields , 1985 .

[169]  Shaul Mukamel,et al.  Nonlinear optical signals and spectroscopy with quantum light , 2016, 1605.06746.

[170]  T. Seideman,et al.  Discerning vibronic molecular dynamics using time-resolved photoelectron spectroscopy , 1999, Nature.

[171]  J. Fröhlich,et al.  Spectral Analysis for Systems of Atoms and Molecules Coupled to the Quantized Radiation Field , 1999 .

[172]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[173]  Thomas W. Ebbesen,et al.  Ground‐State Chemical Reactivity under Vibrational Coupling to the Vacuum Electromagnetic Field , 2016, Angewandte Chemie.

[174]  Ulrich G. Poschinger,et al.  Transfer of optical orbital angular momentum to a bound electron , 2016, Nature Communications.

[175]  Xiaoyi Zhang,et al.  Recent advances on ultrafast X-ray spectroscopy in the chemical sciences , 2014 .

[176]  B. Taylor,et al.  CODATA Recommended Values of the Fundamental Physical Constants: 2010 | NIST , 2007, 0801.0028.

[177]  H. J. Kimble,et al.  Atom–atom interactions around the band edge of a photonic crystal waveguide , 2016, Proceedings of the National Academy of Sciences.

[178]  Adequacy of the Dicke model in cavity QED: A counter-no-go statement , 2012, 1206.0752.

[179]  H. Appel,et al.  Quantum electrodynamical density-functional theory: Bridging quantum optics and electronic-structure theory , 2014, 1403.5541.

[180]  M. Hjorth-Jensen,et al.  Coupled-cluster computations of atomic nuclei , 2013, Reports on progress in physics. Physical Society.

[181]  K. Z. Hatsagortsyan,et al.  Extremely high-intensity laser interactions with fundamental quantum systems , 2011, 1111.3886.

[182]  David A. Strubbe,et al.  Response Functions in TDDFT: Concepts and Implementation , 2012 .

[183]  C. Beenakker,et al.  Search for Majorana Fermions in Superconductors , 2011, 1112.1950.

[184]  T. Ebbesen Hybrid Light-Matter States in a Molecular and Material Science Perspective. , 2016, Accounts of chemical research.

[185]  J. A. Pérez-Hernández,et al.  Breakdown of dipole approximation in strong field ionization , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[186]  I. Tavernelli Nonadiabatic molecular dynamics simulations: synergies between theory and experiments. , 2015, Accounts of chemical research.

[187]  M. Ruggenthaler,et al.  One-body reduced density-matrix functional theory in finite basis sets at elevated temperatures , 2017, Physics Reports.

[188]  T. Ebbesen,et al.  Multiple Rabi Splittings under Ultrastrong Vibrational Coupling. , 2016, Physical review letters.

[189]  Relativistic Coupled Cluster Calculations with Variational Quantum Electrodynamics Resolve the Discrepancy between Experiment and Theory Concerning the Electron Affinity and Ionization Potential of Gold. , 2017, Physical review letters.

[190]  Angel Rubio,et al.  Real-space, real-time method for the dielectric function , 2000 .

[191]  J. Karr,et al.  Theoretical Hyperfine Structure of the Molecular Hydrogen Ion at the 1 ppm Level. , 2015, Physical review letters.

[192]  J. Baumberg,et al.  Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature , 2017, Nature Communications.

[193]  Edward F. Valeev,et al.  Explicitly correlated R12/F12 methods for electronic structure. , 2012, Chemical reviews.

[194]  Wim Ubachs,et al.  Perspective: tipping the scales: search for drifting constants from molecular spectra. , 2013, The Journal of chemical physics.

[195]  Yang Wang,et al.  Foundations of Plasmonics , 2011 .