How to help intelligent systems with different uncertainty representations cooperate with each other

In order to solve a complicated problem one must use the knowledge from different domains. Therefore, if one wants to automatize the solution of these problems, one has to help the knowledge-based systems that correspond to these domains cooperate, that is, communicate facts and conclusions to each other in the process of decision making. One of the main obstacles to such cooperation is the fact that different intelligent systems use different methods of knowledge acquisition and different methods and formalisms for uncertainty representation. So an interface f is needed, 'translating' the values x, y, which represent uncertainty of the experts' knowledge in one system, into the values f(x), f(y) appropriate for another one. The problem of designing such an interface as a mathematical problem is formulated and solved. It is shown that the interface must be fractionally linear: f(x) = (ax + b)/(cx + d).