The Power of Trefftz Approximations: Finite Difference, Boundary Difference and Discontinuous Galerkin Methods; Nonreflecting Conditions and Non-Asymptotic Homogenization

In problems of mathematical physics, Trefftz approximations by definition involve functions that satisfy the differential equation of the problem. The power and versatility of such approximations is illustrated with an overview of a number of application areas: (i) finite difference Trefftz schemes of arbitrarily high order; (ii) boundary difference Trefftz methods analogous to boundary integral equations but completely singularity-free; (iii) Discontinuous Galerkin (DG) Trefftz methods for Maxwell’s electrodynamics; (iv) numerical and analytical nonreflecting Trefftz boundary conditions; (v) non-asymptotic homogenization of electromagnetic and photonic metamaterials.

[1]  Igor Tsukerman,et al.  Effective parameters of metamaterials: a rigorous homogenization theory via Whitney interpolation , 2011 .

[3]  J. Bérenger Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .

[4]  Igor Tsukerman,et al.  A class of difference schemes with flexible local approximation , 2006 .

[5]  R. Hiptmair,et al.  Trefftz Approximations: A New Framework for Nonreflecting Boundary Conditions , 2016, IEEE Transactions on Magnetics.

[6]  Igor Tsukerman,et al.  Computational Methods for Nanoscale Applications , 2020, Nanostructure Science and Technology.

[7]  Dan Givoli,et al.  High-order nonreflecting boundary conditions for the dispersive shallow water equations , 2003 .

[8]  Thomas Weiland,et al.  Discontinuous Galerkin methods with Trefftz approximations , 2013, J. Comput. Appl. Math..

[9]  I. Tsukerman A "Trefftz Machine" for Absorbing Boundary Conditions , 2014, 1406.0224.

[10]  Semyon Tsynkov,et al.  On the Definition of Surface Potentials for Finite-Difference Operators , 2003, J. Sci. Comput..

[11]  L. Fezoui,et al.  Convergence and stability of a discontinuous galerkin time-domain method for the 3D heterogeneous maxwell equations on unstructured meshes , 2005 .

[12]  Igor Tsukerman,et al.  A non-asymptotic homogenization theory for periodic electromagnetic structures , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  C. Saltzer Discrete Potential Theory for Two-Dimensional Laplace and Poisson Difference Equations , 1958 .

[14]  Wenge Guo,et al.  Further results on controlling the false discovery proportion , 2014, 1406.0266.

[15]  Fernando L. Teixeira,et al.  General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media , 1998 .

[16]  Vadim A. Markel,et al.  Surface waves in three-dimensional electromagnetic composites and their effect on homogenization. , 2013, Optics express.

[17]  G. Milton The Theory of Composites , 2002 .

[18]  H. Pinheiro,et al.  Flexible Local Approximation Models for Wave Scattering in Photonic Crystal Devices , 2007, IEEE Transactions on Magnetics.

[19]  Per-Gunnar Martinsson,et al.  Boundary algebraic equations for lattice problems , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  R. Higdon Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation , 1986 .

[21]  Charbel Farhat,et al.  A space–time discontinuous Galerkin method for the solution of the wave equation in the time domain , 2009 .

[22]  P. Martinsson,et al.  Fast multiscale methods for lattice equations , 2002 .

[23]  I. Tsukerman A Singularity-Free Boundary Equation Method for Wave Scattering , 2010, IEEE Transactions on Antennas and Propagation.

[24]  Thomas Weiland,et al.  Transparent boundary conditions for a discontinuous Galerkin Trefftz method , 2014, Appl. Math. Comput..

[25]  F. Cajko,et al.  Photonic Band Structure Computation Using FLAME , 2008, IEEE Transactions on Magnetics.

[26]  Jin-Fa Lee,et al.  A perfectly matched anisotropic absorber for use as an absorbing boundary condition , 1995 .

[27]  D. Givoli High-order local non-reflecting boundary conditions: a review☆ , 2004 .

[28]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[29]  Alain Bossavit,et al.  Modelling of periodic electromagnetic structures bianisotropic materials with memory effects , 2005 .

[30]  Igor Tsukerman,et al.  Trefftz difference schemes on irregular stencils , 2009, J. Comput. Phys..

[31]  I. Tsukerman,et al.  Electromagnetic applications of a new finite-difference calculus , 2005, IEEE Transactions on Magnetics.

[32]  Wolfgang L. Wendland,et al.  Boundary integral equations , 2008 .

[33]  Robert L. Higdon,et al.  Numerical absorbing boundary conditions for the wave equation , 1987 .

[34]  Thomas Weiland,et al.  Non-dissipative space-time hp-discontinuous Galerkin method for the time-dependent Maxwell equations , 2013, J. Comput. Phys..

[35]  Ralf Hiptmair,et al.  Plane Wave Discontinuous Galerkin Methods for the 2D Helmholtz Equation: Analysis of the p-Version , 2011, SIAM J. Numer. Anal..

[36]  P. Monk,et al.  Optimizing the Perfectly Matched Layer , 1998 .

[37]  Igor Tsukerman,et al.  Computational Methods for Nanoscale Applications: Particles, Plasmons and Waves , 2007 .

[38]  Eli Turkel,et al.  A general approach for high order absorbing boundary conditions for the Helmholtz equation , 2013, J. Comput. Phys..

[39]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[40]  Joachim Schöberl,et al.  Simulation of Diffraction in Periodic Media with a Coupled Finite Element and Plane Wave Approach , 2008, SIAM J. Sci. Comput..

[41]  Thomas Hagstrom,et al.  A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems , 2004 .

[42]  S. Tsynkov Numerical solution of problems on unbounded domains. a review , 1998 .

[43]  N. K. Kulman,et al.  Method of difference potentials and its applications , 2001 .

[44]  Dan Givoli,et al.  High-order nonreflecting boundary conditions without high-order derivatives , 2001 .

[45]  M. Gunzburger,et al.  Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .

[46]  Peter Monk,et al.  Discretization of the Wave Equation Using Continuous Elements in Time and a Hybridizable Discontinuous Galerkin Method in Space , 2014, J. Sci. Comput..

[47]  I. Tsukerman,et al.  A Boundary Difference Method for Electromagnetic Scattering Problems With Perfect Conductors and Corners , 2013, IEEE Transactions on Antennas and Propagation.

[48]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[49]  N. Bakhvalov,et al.  Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials , 1989 .

[50]  Ralf Hiptmair,et al.  Plane wave approximation of homogeneous Helmholtz solutions , 2011 .

[51]  I. Tsukerman Negative refraction and the minimum lattice cell size , 2008 .

[52]  S. Gedney An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices , 1996 .

[53]  Effective constitutive parameters of plasmonic metamaterials: homogenization by dual field interpolation. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Ivo Babuška,et al.  A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution , 1995 .

[55]  Thomas Hagstrom,et al.  A formulation of asymptotic and exact boundary conditions using local operators , 1998 .

[56]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .