Identification of Asymptotic Decay to Self-Similarity for One-Dimensional Filtration Equations

The objective of this paper is the derivation and the analysis of a simple explicit numerical scheme for general one-dimensional filtration equations. It is based on an alternative formulation of the problem using the pseudoinverse of the density's repartition function. In particular, the numerical approximations can be proven to satisfy a contraction property for a Wasserstein metric. Various numerical results illustrate the ability of this numerical process to capture the time-asymptotic decay towards self-similar solutions even for fast-diffusion equations.

[1]  Giuseppe Toscani,et al.  WASSERSTEIN METRIC AND LARGE-TIME ASYMPTOTICS OF NONLINEAR DIFFUSION EQUATIONS , 2005 .

[2]  Lorenzo Pareschi,et al.  Diffusive Relaxation Schemes for Multiscale Discrete-Velocity Kinetic Equations , 1998 .

[3]  Haim Brezis,et al.  A numerical method for solving the problem $u_t - \Delta f (u) = 0$ , 1979 .

[4]  Giuseppe Toscani,et al.  ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .

[5]  Yann Brenier,et al.  Order preserving vibrating strings and applications to electrodynamics and magnetohydrodynamics , 2004 .

[6]  Laurent Gosse,et al.  Asymptotic-preserving & well-balanced schemes for radiative transfer and the Rosseland approximation , 2004, Numerische Mathematik.

[7]  Ricardo H. Nochetto,et al.  A posteriori error estimation and adaptivity for degenerate parabolic problems , 2000, Math. Comput..

[8]  Giuseppe Toscani,et al.  A central limit theorem for solutions of the porous medium equation , 2005 .

[9]  Carsten Ebmeyer,et al.  Error Estimates for a Class of Degenerate Parabolic Equations , 1998 .

[10]  Wen-An Yong,et al.  A numerical approach to degenerate parabolic equations , 2002, Numerische Mathematik.

[11]  J. Kacur,et al.  solution of nonlinear diffusion problems by linear approximation schemes , 1993 .

[12]  Juan Luis Vázquez,et al.  Asymptotic behaviour for the porous medium equation posed in the whole space , 2003 .

[13]  Laurent Gosse,et al.  Space Localization and Well-Balanced Schemes for Discrete Kinetic Models in Diffusive Regimes , 2003, SIAM J. Numer. Anal..

[14]  Juan Luis Vázquez,et al.  Asymptotic behaviour and propagation properties of the one-dimensional flow of gas in a porous medium , 1983 .

[15]  Yann Brenier,et al.  Hydrodynamic Structure of the Augmented Born-Infeld Equations , 2004 .

[16]  C. Villani Topics in Optimal Transportation , 2003 .

[17]  Ansgar Jüngel,et al.  Entropy Dissipation Methods for Degenerate ParabolicProblems and Generalized Sobolev Inequalities , 2001 .

[18]  Karl Oelschläger,et al.  Simulation of the Solution of a Viscous Porous Medium Equation by a Particle Method , 2002, SIAM J. Numer. Anal..

[19]  Ricardo H. Nochetto,et al.  Approximation of Degenerate Parabolic Problems Using Numerical Integration , 1988 .

[20]  Todd Arbogast,et al.  A Nonlinear Mixed Finite Eelement Method for a Degenerate Parabolic Equation Arising in Flow in Porous Media , 1996 .

[21]  J. Kacur,et al.  Solution of Some Free Boundary Problems by Relaxation Schemes , 1998 .

[22]  J. A. Carrillo,et al.  Asymptotic L1-decay of solutions of the porous medium equation to self-similarity , 2000 .

[23]  Shaoqiang Tang,et al.  Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems , 2004, Math. Comput..

[24]  J. Vázquez An Introduction to the Mathematical Theory of the Porous Medium Equation , 1992 .

[25]  Willi Jäger,et al.  Solution of porous medium type systems by linear approximation schemes , 1991 .

[26]  K. Mikula,et al.  Numerical solution of nonlinear diffusion with finite extinction phenomenon. , 1995 .

[27]  Giuseppe Toscani,et al.  Finite speed of propagation in porous media by mass transportation methods , 2004 .