Finite Element Analysis on the Impact-Induced Damage of Composite Fan Blades Subjected to a Bird Strike

Carbon fiber-reinforced composites have been recently applied for engine fan blades, because of their high specific strength. In the design of the fan blade, the bird-strike impact is one of the greatest concerns, since impact-induced damage can lead to the engine stall. This study presented a numerical method to analyze the bird-strike impact as a soft-body impact on cantilevered composite panel. Especially, we coupled a stabilized dynamic contact analysis, which enables predicting impact force on the panel appropriately, with laminate damage analysis to predict the impact-induced progressive damage in the composite. This method was verified through the comparison with the experimental results. With the numerical method, we investigated the effect of impact condition, blade thickness and shape on the impact-induced damage in composite fan blade subjected to a bird strike. An intermediate blade thickness and a large blade curvature help improving the bird-striking impact resistance of the composite.