Poolcasting: an intelligent technique to customise musical programmes for their audience

Poolcasting es una tecnica inteligente para crear secuencias musicales personalizadas para un grupo de oyentes, Poolcasting actua como un disc jockey, determinando y reproduciendo canciones que satisfacen su audiencia. Satisfacer a todo el publico no es un trabajo sencillo, especialmente cuando los miembros del grupo tienen preferencias heterogeneas y pueden entrar o salir del grupo en cualquier momento. La propuesta de poolcasting consiste en seleccionar las canciones iterativamente, en tiempo real, favorecendo esos miembros que son menos satisfechos por las ultimas canciones reproducidas. Ademas, poolcasting asegura que la secuencia reproducida no repite las mismas canciones o los mismos artistas a corto plazo y que dos canciones consecutivas suenen bien una despues de la otra, en sentido musical. Los buenos disc jockeys conocen por experiencia cuales canciones suenan bien en secuencia; poolcasting obtiene este conocimiento de la analisis de playlists compartidas en la Web. Cuanto mas dos canciones ocorren cerca en estas playlists, cuanto mas poolcasting considera dos canciones como asociadas, de acuerdo con las experiencias humanas expresadas a traves de las playlists. Combinando este conocimiento y los perfiles musicals de los oyentes, poolcasting autonomamente genera secuencias que son variadas, musicalmente fluidas y correctamente adaptadas para una audiencia particular. Una aplicacion natural para poolcasting es automatizar programas de radio. Muchas radios online emiten en cada canal una secuencia casual de canciones que no se ve afectadas por quien esta escuchando. Aplicar poolcasting puede mejorar los programas de radio, reproduciendo en cada canal una secuencia musical variada, fluida y personalizada para un grupo. La integracion de poolcasting en una radio Web ha resultado en un nuevo sistema llamado Poolcasting Web radio. Decenas de personas se han conectado a esta radio online durante un ano ofreciendo evaluacion de primera mano de sus caracteristicas sociales. Un conjunto de experimentos ha sido ejecutado para evaluar como el tamano del grupo y su homogeneidad musical afectan la performance de la tecnica de poolcasting.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[3]  Elaine Rich,et al.  Building and Exploiting User Models , 1979, IJCAI.

[4]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[5]  Timothy W. Finin,et al.  Modeling the User in Natural Language Systems , 1988, CL.

[6]  R. A. Yackulic,et al.  Personality predictors of loneliness , 1989 .

[7]  A. Banerjee,et al.  A Simple Model of Herd Behavior , 1992 .

[8]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[9]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[10]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..

[11]  Upendra Shardanand Social information filtering for music recommendation , 1994 .

[12]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[13]  Ken Lang,et al.  NewsWeeder: Learning to Filter Netnews , 1995, ICML.

[14]  J. Avery,et al.  The long tail. , 1995, Journal of the Tennessee Medical Association.

[15]  Henry Lieberman,et al.  Letizia: An Agent That Assists Web Browsing , 1995, IJCAI.

[16]  Mark Rosenstein,et al.  Recommending and evaluating choices in a virtual community of use , 1995, CHI '95.

[17]  Agnar Aamodt,et al.  Case-Based Reasoning Research and Development , 1995, Lecture Notes in Computer Science.

[18]  Bruce Krulwich,et al.  Learning user information interests through extraction of semantically significant phrases , 1996 .

[19]  Alejandro Martins,et al.  A Large Case-Based Reasoner for Legal Cases , 1997, ICCBR.

[20]  Graeme Hirst,et al.  Authoring and Generating Health-Education Documents That Are Tailored to the Needs of the Individual Patient , 1997 .

[21]  Kristian J. Hammond,et al.  The FindMe Approach to Assisted Browsing , 1997, IEEE Expert.

[22]  Thomas Hofmann,et al.  Statistical Models for Co-occurrence Data , 1998 .

[23]  Eric Horvitz,et al.  The Lumière Project: Bayesian User Modeling for Inferring the Goals and Needs of Software Users , 1998, UAI.

[24]  David M. Nichols,et al.  Implicit Rating and Filtering , 1998 .

[25]  Robin D. Burke,et al.  The Wasabi Personal Shopper: A Case-Based Recommender System , 1999, AAAI/IAAI.

[26]  Peyman Faratin,et al.  Automated service negotiation between autonomous computational agents , 2000 .

[27]  Joseph F. McCarthy,et al.  MUSICFX: an arbiter of group preferences for computer supported collaborative workouts , 2000, CSCW '00.

[28]  Alex Weiss Music Selection for Internet Radio , 2000 .

[29]  William W. Cohen,et al.  Web-collaborative filtering: recommending music by crawling the Web , 2000, Comput. Networks.

[30]  François Pachet,et al.  A taxonomy of musical genres , 2000, RIAO.

[31]  Robin Burke,et al.  Knowledge-based recommender systems , 2000 .

[32]  Hideo Shimazu,et al.  ExpertClerk: Navigating Shoppers Buying Process with the Combination of Asking and Proposing , 2001, IJCAI.

[33]  Daniel P. W. Ellis,et al.  Locating singing voice segments within music signals , 2001, Proceedings of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (Cat. No.01TH8575).

[34]  Cynthia R. Marling,et al.  Case-Based Reasoning in the Care of Alzheimer's Disease Patients , 2001, ICCBR.

[35]  Arbee L. P. Chen,et al.  A music recommendation system based on music data grouping and user interests , 2001, CIKM '01.

[36]  John Riedl,et al.  PolyLens: A recommender system for groups of user , 2001, ECSCW.

[37]  In-Sik Hong,et al.  The implementation of knowledge-based recommender system for electronic commerce using Java expert system library , 2001, ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570).

[38]  Padraig Cunningham,et al.  Smart radio - community based music radio , 2001, Knowl. Based Syst..

[39]  M. Claypool,et al.  Inferring User Interest , 2001, IEEE Internet Comput..

[40]  François Pachet,et al.  Musical data mining for electronic music distribution , 2001, Proceedings First International Conference on WEB Delivering of Music. WEDELMUSIC 2001.

[41]  Ralph Bergmann,et al.  WEBSELL: Intelligent Sales Assistants for the World Wide Web , 2001, Künstliche Intell..

[42]  James C. French,et al.  Flycasting: using collaborative filtering to generate a playlist for online radio , 2001, Proceedings First International Conference on WEB Delivering of Music. WEDELMUSIC 2001.

[43]  Douglas W. Oard,et al.  Modeling Information Content Using Observable Behavior , 2001 .

[44]  Abigail Sellen,et al.  Music sharing as a computer supported collaborative application , 2001, ECSCW.

[45]  Miriam J. Metzger,et al.  The End of Mass Communication? , 2001 .

[46]  Man-Kwan Shan,et al.  A personalized music filtering system based on melody style classification , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[47]  C. List,et al.  Aggregating Sets of Judgments: An Impossibility Result , 2002, Economics and Philosophy.

[48]  Daniel P. W. Ellis,et al.  USING VOICE SEGMENTS TO IMPROVE ARTIST CLASSIFICATION OF MUSIC , 2002 .

[49]  Kristian J. Hammond,et al.  Flytrap: intelligent group music recommendation , 2002, IUI '02.

[50]  George Tzanetakis,et al.  Musical genre classification of audio signals , 2002, IEEE Trans. Speech Audio Process..

[51]  William Haseman,et al.  An Empirical Investigation of the Influences of the Degree of Interactivity on User-Outcomes in a Multimedia Environment , 2002, Inf. Resour. Manag. J..

[52]  J. S. Downie The MIR/MDL Evaluation Project White Paper Collection , 2002 .

[53]  François Pachet,et al.  Music Similarity Measures: What's the use? , 2002, ISMIR.

[54]  Steve Lawrence,et al.  Inferring Descriptions and Similarity for Music from Community Metadata , 2002, ICMC.

[55]  Jaime Teevan,et al.  Implicit feedback for inferring user preference: a bibliography , 2003, SIGF.

[56]  Liliana Ardissono,et al.  Personalized Recommendation of TV Programs , 2003, AI*IA.

[58]  Daniel P. W. Ellis,et al.  Toward Evaluation Techniques for Music Similarity , 2003, SIGIR 2003.

[59]  Bamshad Mobasher,et al.  Impact of Site Characteristics on Recommendation Models Based On Association Rules and Sequential Patterns , 2003 .

[60]  John Riedl,et al.  Is seeing believing?: how recommender system interfaces affect users' opinions , 2003, CHI '03.

[61]  Kenton O'Hara,et al.  Jukola: democratic music choice in a public space , 2004, DIS '04.

[62]  Alfred Kobsa,et al.  Generic User Modeling Systems , 2001, User Modeling and User-Adapted Interaction.

[63]  Anthony Jameson,et al.  More than the sum of its members: challenges for group recommender systems , 2004, AVI.

[64]  Heikki Mannila,et al.  Discovery of Frequent Episodes in Event Sequences , 1997, Data Mining and Knowledge Discovery.

[65]  Thomas J. Johnson,et al.  Wag the Blog: How Reliance on Traditional Media and the Internet Influence Credibility Perceptions of Weblogs Among Blog Users , 2004 .

[66]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[67]  Rul Gunzenhäuser,et al.  Hypadapter: An adaptive hypertext system for exploratory learning and programming , 1996, User Modeling and User-Adapted Interaction.

[68]  Ichiro Fujinaga,et al.  Web Services for Music Information Retrieval , 2004, ISMIR.

[69]  François Pachet,et al.  Improving Timbre Similarity : How high’s the sky ? , 2004 .

[70]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[71]  Matthew MacDonald,et al.  Web Services Architecture , 2004 .

[72]  Judith Masthoff,et al.  Group Modeling: Selecting a Sequence of Television Items to Suit a Group of Viewers , 2004, User Modeling and User-Adapted Interaction.

[73]  Josep Lluís de la Rosa i Esteva,et al.  A Taxonomy of Recommender Agents on the Internet , 2003, Artificial Intelligence Review.

[74]  Sarvapali D. Ramchurn,et al.  Multi-agent negotiation using trust and persuasion , 2004 .

[75]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[76]  Ke Wang,et al.  Discovering Patterns from Large and Dynamic Sequential Data , 1997, Journal of Intelligent Information Systems.

[77]  Fabio Vignoli,et al.  Digital Music Interaction Concepts: A User Study , 2004, ISMIR.

[78]  Cass R. Sunstein,et al.  Group Judgments: Deliberation, Statistical Means, and Information Markets , 2004 .

[79]  DIMITRIOS PIERRAKOS,et al.  User Modeling and User-Adapted Interaction , 1994, User Modeling and User-Adapted Interaction.

[80]  Stephan Baumann,et al.  AN ECOLOGICAL APPROACH TO MULTIMODAL SUBJECTIVE MUSIC SIMILARITY PERCEPTION , 2004 .

[81]  Hugo Liu InterestMap : Harvesting Social Network Profiles for Recommendations , 2004 .

[82]  Markus Koppenberger,et al.  Natural language processing of lyrics , 2005, ACM Multimedia.

[83]  Barry Smyth,et al.  Retrieval, reuse, revision and retention in case-based reasoning , 2005, The Knowledge Engineering Review.

[84]  K. Kaji,et al.  A music recommendation system based on annotations about listeners' preferences and situations , 2005, First International Conference on Automated Production of Cross Media Content for Multi-Channel Distribution (AXMEDIS'05).

[85]  Ravi Dhar,et al.  Goal Fulfillment and Goal Targets in Sequential Choice , 2005 .

[86]  Cormac Herley,et al.  Inferring similarity between music objects with application to playlist generation , 2005, MIR '05.

[87]  J. Giles Internet encyclopaedias go head to head , 2005, Nature.

[88]  Pedro Cano,et al.  A Review of Audio Fingerprinting , 2005, J. VLSI Signal Process..

[89]  David W. McDonald,et al.  Social matching: A framework and research agenda , 2005, TCHI.

[90]  Enric Plaza,et al.  Case-Based Sequential Ordering of Songs for Playlist Recommendation , 2006, ECCBR.

[91]  Sally Jo Cunningham,et al.  'More of an Art than a Science': Supporting the Creation of Playlists and Mixes , 2006, ISMIR.

[92]  Peter Knees,et al.  Assigning and Visualizing Music Genres by Web-based Co-Occurrence Analysis , 2006, ISMIR.

[93]  Juan M. Corchado,et al.  gene‐CBR: A CASE‐BASED REASONIG TOOL FOR CANCER DIAGNOSIS USING MICROARRAY DATA SETS , 2006, Comput. Intell..

[94]  Barry A. T. Brown,et al.  Consuming music together : social and collaborative aspects of music consumption technologies , 2006 .

[95]  Sarit Kraus,et al.  Applying cooperative negotiation methodology to group recommendation problem , 2006 .

[96]  Rajagopal Raghunathan,et al.  Is Happiness Shared Doubled and Sadness Shared Halved? Social Influence on Enjoyment of Hedonic Experiences , 2006 .

[97]  Carl Gutwin,et al.  DJs' perspectives on interaction and awareness in nightclubs , 2006, DIS '06.

[98]  Barry Smyth,et al.  Social Interaction in the CATS Group Recommender ? , 2006 .

[99]  Rebecca E. Grinter,et al.  Social Practices Around Itunes , 2006 .

[100]  Edmund A. Mennis The Wisdom of Crowds: Why the Many Are Smarter than the Few and How Collective Wisdom Shapes Business, Economies, Societies, and Nations , 2006 .

[101]  Andreja Andric,et al.  Automatic playlist generation based on tracking user’s listening habits , 2006, Multimedia Tools and Applications.

[102]  Julian Togelius,et al.  Making Racing Fun Through Player Modeling and Track Evolution , 2006 .

[103]  Judith Masthoff,et al.  In pursuit of satisfaction and the prevention of embarrassment: affective state in group recommender systems , 2006, User Modeling and User-Adapted Interaction.

[104]  J. Dijck,et al.  Record and Hold: Popular Music between Personal and Collective Memory , 2006 .

[105]  Alexandra E. Fox Battle of the Music Recommender Systems: User-Centered Evaluation of Collaborative Filtering, Content-Based Analysis and Hybrid Systems , 2007 .

[106]  Sally Jo Cunningham,et al.  Sociology and Music Recommendation Systems , 2007, ISMIR.

[107]  Enric Plaza,et al.  A Case-Based Song Scheduler for Group Customised Radio , 2007, ICCBR.

[108]  Mark Sandler,et al.  Using the Semantic Web for Enhanced Audio Experiences , 2007 .

[109]  Barry Smyth,et al.  Case-Based Recommendation , 2007, The Adaptive Web.

[110]  James Bennett,et al.  The Netflix Prize , 2007 .

[111]  Alfred Kobsa,et al.  The Adaptive Web, Methods and Strategies of Web Personalization , 2007, The Adaptive Web.

[112]  J. Stephen Downie,et al.  Exploring Mood Metadata: Relationships with Genre, Artist and Usage Metadata , 2007, ISMIR.

[113]  Michael J. Pazzani,et al.  Adaptive News Access , 2007, The Adaptive Web.

[114]  Claudio Baccigalupo Mining Music Social Networks for Automating Social Music Services ? , 2007 .

[115]  Barry Smyth,et al.  Recommendation to Groups , 2007, The Adaptive Web.

[116]  Mark B. Sandler,et al.  A Semantic Space for Music Derived from Social Tags , 2007, ISMIR.

[117]  Yann Chevaleyre,et al.  A Short Introduction to Computational Social Choice , 2007, SOFSEM.

[118]  Stefan Leitich,et al.  PublicDJ - Music selection in public spaces as multiplayer game , 2007 .

[119]  C. Baccigalupo,et al.  Poolcasting: A Social Web Radio Architecture for Group Customisation , 2007, Third International Conference on Automated Production of Cross Media Content for Multi-Channel Distribution (AXMEDIS'07).

[120]  Enric Plaza,et al.  Sharing and Combining listening Experience: a Social Approach to Web Radio , 2007, ICMC.

[121]  Gavin Potter Putting the collaborator back into collaborative filtering , 2008, NETFLIX '08.

[122]  Terence Magno,et al.  A Comparison of Signal Based Music Recommendation to Genre Labels, Collaborative Filtering, Musicological Analysis, Human Recommendation and Random Baseline , 2008, ISMIR.

[123]  David Baelde,et al.  De la webradio lambda à la λ-webradio , 2008 .

[124]  Melanie Tory,et al.  Music selection using the PartyVote democratic jukebox , 2008, AVI '08.

[125]  Òscar Celma,et al.  The Quest for Musical Genres: Do the Experts and the Wisdom of Crowds Agree? , 2008, ISMIR.

[126]  Yen-Liang Chen,et al.  A group recommendation system with consideration of interactions among group members , 2008, Expert Syst. Appl..

[127]  Justin Donaldson,et al.  Uncovering Affinity of Artists to Multiple Genres from Social Behaviour Data , 2008, ISMIR.

[128]  Andreas Rauber,et al.  Rhyme and Style Features for Musical Genre Classification by Song Lyrics , 2008, ISMIR.

[129]  Peter Knees,et al.  Oh Oh Oh Whoah! Towards Automatic Topic Detection In Song Lyrics , 2008, ISMIR.

[130]  Sarah Jane Delany Proceedings of the ICCBR 2009 Workshops , 2009 .

[131]  Enric Plaza,et al.  Principle and Praxis in the Experience Web : A Case Study in Social Music , 2009 .

[132]  Michael A. Hogg,et al.  Social Identity, Self-Categorization, and the Small Group , 2018, Understanding Group Behavior.