Mars Express and MARSIS

The Mars Express mission to be launched in 2003 will provide high resolution measurements of the Martian atmosphere and ionosphere. The neutral density, temperature, and composition will be measured, and MARSIS, a low frequency radar experiment, will probe the Martian plasma environment for electron densities in the range from 100 to 3 × 105 electrons/cm−3. The radar will for the first time make measurements of the ionosphere in the sub-solar and midnight regions which were not accessible to previous missions. The radar will provide global coverage and an increase in spatial resolution of vertical electron density profiles, which can be used to improve understanding relationships between the neutral atmosphere and ionosphere, and the interactions of the solar wind with the planet. The radar may be able to detect effects associated with magnetic merging, plasma clouds, and plasma streams, which have been predicted in the dayside/terminator ionosphere. Measurements on the nightside can be used to search for proposed fine structures (‘holes’) in the electron density. Hydrodynamic waves are predicted to be excited by the solar wind/ionosphere interaction and their influence on the electron densities can be observed with the radar. Neutral density and temperature profiles are required to understand the details of the vertical variations of the electron density. This includes testing for effects induced on the electron density profiles by dust storms and by precipitations of solar wind ions in cusp-like magnetic regions. The search for trace elements by optical spectrometers may reveal magnesium ions in predicted meteoric layer.

[1]  H. K. Sen,et al.  On the generalization of the Appleton‐Hartree magnetoionic formulas , 1960 .

[2]  A. V. Phelps,et al.  Momentum-Transfer and Inelastic-Collision Cross Sections for Electrons in O-2, CO, and C O-2 , 1967 .

[3]  A. Kliore,et al.  The atmosphere of Mars from Mariner 9 radio occultation measurements. , 1972 .

[4]  W. B. Hanson,et al.  The Martian ionosphere as observed by the Viking retarding potential analyzers , 1977 .

[5]  B. L. Seidel,et al.  Viking Radio Occultation Measurements of the Martian Atmosphere and Topography: Primary Mission Coverage , 1977 .

[6]  M. McElroy,et al.  Photochemistry and evolution of Mars' atmosphere: A Viking perspective , 1977 .

[7]  W. B. Hanson,et al.  Mars' upper atmosphere: Mean and variations , 1978 .

[8]  F. S. Johnson,et al.  A new concept for the daytime magnetosphere of Venus , 1979 .

[9]  C. Russell,et al.  The dynamic behavior of the Venus ionosphere in response to solar wind interactions , 1980 .

[10]  R. Schunk,et al.  Ionospheres of the terrestrial planets , 1980 .

[11]  J. Slavin,et al.  The solar wind interaction with Mars revisited , 1982 .

[12]  C. Russell,et al.  Growth and maintenance of large-scale magnetic fields in the dayside Venus ionosphere , 1984 .

[13]  J. Luhmann The solar wind interaction with Venus , 1986 .

[14]  A. M. Krymskii,et al.  Some problems of the solar wind interaction with Venus , 1987 .

[15]  Christopher T. Russell,et al.  Characteristics of the Marslike limit of the Venus‐solar wind interaction , 1987 .

[16]  Thomas E. Cravens,et al.  A one-dimensional multispecies magnetohydrodynamic model of the dayside ionosphere of Mars , 1988 .

[17]  W. B. Hanson,et al.  Viking electron temperature measurements: Evidence for a magnetic field in the Martian ionosphere , 1988 .

[18]  S. Bauer,et al.  Solar cycle variation of the upper atmosphere temperature of Mars , 1989 .

[19]  Janet G. Luhmann,et al.  An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods , 1990 .

[20]  J. Pollack,et al.  Numerical simulations of the decay of Martian global dust storms , 1990 .

[21]  Janet G. Luhmann,et al.  A post-pioneer Venus reassessment of the Martian dayside ionosphere as observed by radio occultation methods , 1990 .

[22]  S. Bauer,et al.  Solar control of the Mars ionosphere , 1990 .

[23]  E. Nielsen,et al.  On possible observational evidence in electron density profiles of a magnetic field in the Martian ionosphere , 1995 .

[24]  S. Bougher,et al.  The Martian Thermosphere-Ionosphere at High and Low Solar Activities , 1996 .

[25]  Ness,et al.  Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission , 1998, Science.

[26]  Hood,et al.  Lunar surface magnetic fields and their interaction with the solar wind: results from lunar prospector , 1998, Science.

[27]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[28]  Ness,et al.  Magnetic lineations in the ancient crust of mars , 1999, Science.

[29]  J. Connerney,et al.  Effects of magnetic anomalies discovered at Mars on the structure of the Martian ionosphere and solar wind interaction as follows from radio occultation experiments , 2000 .

[30]  W. Pesnell,et al.  Meteoric Magnesium Ions in the Martian Atmosphere , 2000 .

[31]  D. Mitchell,et al.  Oxygen auger electrons observed in Mars' ionosphere , 2000 .

[32]  M. N. Izakov Turbulence and anomalous heat fluxes in the atmospheres of Mars and Venus , 2001 .

[33]  J. Lebreton,et al.  HF radio wave attenuation due to a meteoric layer in the atmosphere of Mars , 2001 .

[34]  D. Mitchell,et al.  Probing Mars' crustal magnetic field and ionosphere with the MGS Electron Reflectometer , 2001 .

[35]  J. Connerney,et al.  Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits , 2001 .

[36]  J. Forbes,et al.  Mars Global Surveyor radio science electron density profiles : Neutral atmosphere implications , 2001 .

[37]  E. Nielsen,et al.  Possible hydrodynamic waves in the topside ionospheres of Mars and Venus , 2002 .

[38]  E. Nielsen,et al.  Preliminary numerical simulation on hydrodynamic waves in Mars' topside ionosphere , 2003 .