Nanopowder management and control of plasma parameters in electronegative SiH4 plasmas

The nanopowder management and control of plasma parameters in electronegative SiH4 plasmas were discussed. The spatial profiles of electron and positive/negative ion number densities, electron temperature and charge of the fine particles were obtained. It was found that management of powder charge distribution is also possible through control of the external parameters.

[1]  D. Sheehan,et al.  Positively charged dust crystals induced by radiative heating , 1999 .

[2]  I. Schweigert,et al.  Coagulation in a low-temperature plasma , 1996 .

[3]  Michael Keidar,et al.  Influence of an electrical field on the macroparticle size distribution in a vacuum arc , 1999 .

[4]  D. Mendis,et al.  UV-induced Coulomb crystallization in a dusty gas , 1995 .

[5]  Shuyan Xu,et al.  Diagnostics and two-dimensional simulation of low-frequency inductively coupled plasmas with neutral gas heating and electron heat fluxes , 2002 .

[6]  A. Matsuda,et al.  Spatial Distribution of SiH3 Radicals in RF Silane Plasma , 1990 .

[7]  Yu,et al.  Surface waves in strongly irradiated dusty plasmas , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Takashi Hirao,et al.  Low Temperature Growth of Amorphous and Polycrystalline Silicon Films from a Modified Inductively Coupled Plasma , 1997 .

[9]  Vladimirov,et al.  Equilibrium and levitation of dust in a collisional plasma with ionization , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  E. Fortunato,et al.  Role of ion bombardment and plasma impedance on the performances presented by undoped a-Si:H films , 2001 .

[11]  G. Kroesen,et al.  Surface modification of powder particles by plasma deposition of thin metallic films , 1998 .

[12]  K. Tachibana,et al.  Molecular composition of films and solid particles polymerized in fluorocarbon plasmas , 2001 .

[13]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[14]  A. Bouchoule,et al.  Industrial developments of scientific insights in dusty plasmas , 2002 .

[15]  A. Bouchoule,et al.  Particulate formation and dusty plasma behaviour in argon-silane RF discharge , 1993 .

[16]  W. Stoffels,et al.  Surface processes of dust particles in low pressure plasmas , 2001 .

[17]  S. Vladimirov,et al.  Self-Organization and Dynamics of Nanoparticles in Chemically Active Plasmas for Low-Temperature Deposition of Silicon and Carbon-Based Nanostructured Films , 2003 .

[18]  H. Estrade-szwarckopf,et al.  Role of the surface roughness in laser induced crystallization of nanostructured silicon films , 2000 .

[19]  E. T. WHITTAKER,et al.  Partial Differential Equations of Mathematical Physics , 1932, Nature.

[20]  Darrell G. Schlom,et al.  Oxide nano-engineering using MBE , 2001 .

[21]  M. Keidar,et al.  Macroparticle reflection from a biased substrate in a vacuum arc deposition system , 1999 .

[22]  Leonard C. Feldman,et al.  Electronic thin film science : for electrical engineers and materials scientists , 1996 .

[23]  André Bouchoule,et al.  Dusty plasmas : physics, chemistry, and technological impacts in plasma processing , 2000 .

[24]  H. Sugai,et al.  Charging and trapping of macroparticles in near-electrode regions of fluorocarbon plasmas with negative ions , 2001 .

[25]  Gregor E. Morfill,et al.  Complex plasmas: I. complex plasmas as unusual state of matter , 2002 .

[26]  K. Tu,et al.  Thermoelectric characterization of Si thin films in silicon-on-insulator wafers , 1999 .

[27]  J. Perrin,et al.  The physics of plasma-enhanced chemical vapour deposition for large-area coating: industrial application to flat panel displays and solar cells , 2000 .

[28]  M. Kushner,et al.  Simulation of the bulk and surface properties of amorphous hydrogenated silicon deposited from silane plasmas , 1989 .

[29]  Mark J. Kushner,et al.  A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon , 1988 .

[30]  M. Childs,et al.  Small particle growth in silane radio-frequency discharges , 2000 .

[31]  J. Boeuf,et al.  Transition from a capacitive to a resistive regime in a silane radio frequency discharge and its possible relation to powder formation , 1992 .

[32]  W. Goedheer,et al.  A PIC-MC simulation of the effect of frequency on the characteristics of VHF SiH4/H2 discharges , 1999 .

[33]  J. Goree,et al.  Fluctuations of the charge on a dust grain in a plasma , 1994 .

[34]  M. Nishitani,et al.  Wall Heating Effect on Crystallization of Low-Temperature Deposited Silicon Films from an Inductively-Coupled Plasma , 2001 .

[35]  H. Ohkura,et al.  Contribution of short lifetime radicals to the growth of particles in SiH4 high frequency discharges and the effects of particles on deposited films , 1996 .

[36]  S. Brown,et al.  Fundamentals of plasma physics , 1977 .

[37]  Gallagher Model of particle growth in silane discharges , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  Hideo Sugai,et al.  Standing surface waves in a dust-contaminated large-area planar plasma source , 1999 .

[39]  S. Vladimirov,et al.  DISSIPATIVE DRIFT WAVES IN PARTIALLY IONIZED PLASMAS CONTAINING HIGH-Z IMPURITIES OR DUST , 1998 .

[40]  G. Kroesen,et al.  Micro-disperse particles in plasmas: From disturbing side effects to new applications , 2001 .

[41]  V. Nagarajan,et al.  Epitaxial La-doped SrTiO3 on silicon: A conductive template for epitaxial ferroelectrics on silicon , 2002 .

[42]  Jonathan P. Williams,et al.  Overview of growth and behaviour of clusters and particles in plasmas , 1994 .

[43]  T. Matsoukas,et al.  Stochastic charge fluctuations in dusty plasmas , 1996 .

[44]  M. Shiratani,et al.  Growth of particles in cluster-size range in low pressure and low power SiH4 rf discharges , 1999 .

[45]  N. A. Azarenkov,et al.  The radial structure of a plasma column sustained by a surface wave , 2000 .

[46]  U. Kortshagen,et al.  Modelling of silicon hydride clustering in a low-pressure silane plasma , 2000 .

[47]  U. Kortshagen,et al.  Plasma chemistry and growth of nanosized particles in a C2H2 RF discharge , 2001 .

[48]  M. Takai,et al.  Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma , 2000 .

[49]  U. Kortshagen,et al.  Modeling of particulate coagulation in low pressure plasmas. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Chuang‐Chuang Tsai,et al.  Film formation mechanisms in the plasma deposition of hydrogenated amorphous silicon , 1986 .

[51]  D. A. Mendis,et al.  Secondary emission from small dust grains at high electron energies , 1994 .

[52]  A. Fridman,et al.  Dusty plasma formation: Physics and critical phenomena. Theoretical approach , 1996 .

[53]  A. Piel,et al.  Dynamical processes in complex plasmas , 2002 .

[54]  P. Roca i Cabarrocas,et al.  Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films , 2000 .

[55]  Hirotaka Toyoda,et al.  Lower Temperature Deposition of Polycrystalline Silicon Films from a Modified Inductively Coupled Silane Plasma. , 1999 .

[56]  M. Keidar,et al.  Macroparticle separation and plasma collimation in positively biased ducts in filtered vacuum arc deposition systems , 1999 .

[57]  C. Hollenstein The physics and chemistry of dusty plasmas , 2000 .