Introducing a fluorescence-based standard to quantify protein partitioning into membranes.

[1]  P. Schwille,et al.  Diffusion coefficients and dissociation constants of enhanced green fluorescent protein binding to free standing membranes , 2015, Data in brief.

[2]  Eduard Hermann,et al.  Automated analysis of giant unilamellar vesicles using circular Hough transformation , 2014, Bioinform..

[3]  Paul Müller,et al.  PyCorrFit—generic data evaluation for fluorescence correlation spectroscopy , 2014, Bioinform..

[4]  Frederick A. Heberle,et al.  The molecular structure of a phosphatidylserine bilayer determined by scattering and molecular dynamics simulations. , 2014, Soft matter.

[5]  P. Bork,et al.  A quantitative liposome microarray to systematically characterize protein-lipid interactions , 2013, Nature Methods.

[6]  F. Monroy,et al.  Membrane reconstitution of FtsZ-ZipA complex inside giant spherical vesicles made of E. coli lipids: large membrane dilation and analysis of membrane plasticity. , 2013, Biochimica et biophysica acta.

[7]  P. Pohl,et al.  Mechanism for Targeting the A-kinase Anchoring Protein AKAP18δ to the Membrane* , 2012, The Journal of Biological Chemistry.

[8]  P. Schwille,et al.  Quantifying lipid diffusion by fluorescence correlation spectroscopy: a critical treatise. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[9]  Christopher J. Ryan,et al.  Membrane bending by protein–protein crowding , 2012, Nature Cell Biology.

[10]  P. Lappalainen,et al.  A simple guide to biochemical approaches for analyzing protein–lipid interactions , 2012, Molecular biology of the cell.

[11]  C. Musselman,et al.  Emerging methodologies to investigate lipid-protein interactions. , 2012, Integrative biology : quantitative biosciences from nano to macro.

[12]  M. Prieto,et al.  The effect of variable liposome brightness on quantifying lipid-protein interactions using fluorescence correlation spectroscopy. , 2011, Biochimica et biophysica acta.

[13]  N. Hatzakis,et al.  Observation of inhomogeneity in the lipid composition of individual nanoscale liposomes. , 2011, Journal of the American Chemical Society.

[14]  A. Kenworthy,et al.  A quantitative approach to analyze binding diffusion kinetics by confocal FRAP. , 2010, Biophysical journal.

[15]  E. Rhoades,et al.  Effects of curvature and composition on α-synuclein binding to lipid vesicles. , 2010, Biophysical journal.

[16]  Pasquale Stano,et al.  Giant Vesicles: Preparations and Applications , 2010, Chembiochem : a European journal of chemical biology.

[17]  K. Gaus,et al.  Actin Dynamics Drive Membrane Reorganization and Scission in Clathrin-Independent Endocytosis , 2010, Cell.

[18]  N. Hatzakis,et al.  How curved membranes recruit amphipathic helices and protein anchoring motifs. , 2009, Nature chemical biology.

[19]  J. Rädler,et al.  Diffusion and molecular binding in crowded vesicle solutions measured by fluorescence correlation spectroscopy , 2009 .

[20]  E. Pérez-Payá,et al.  Membrane promotes tBID interaction with BCL(XL). , 2009, Nature structural & molecular biology.

[21]  D. Ricklin,et al.  Oligohis‐tags: mechanisms of binding to Ni2+‐NTA surfaces , 2009, Journal of molecular recognition : JMR.

[22]  J. Wayment,et al.  Single-molecule fluorescence imaging of peptide binding to supported lipid bilayers. , 2009, Analytical chemistry.

[23]  R. Stahelin Lipid binding domains: more than simple lipid effectors This research was supported by grants from the American Heart Association (0735350N), the American Cancer Society (IRG-84-002-22), and the Indiana University School of Medicine. Published, JLR Papers in Press, November 13, 2008. , 2009, Journal of Lipid Research.

[24]  R Macdonald,et al.  Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy , 2008, Journal of microscopy.

[25]  Petra Schwille,et al.  Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions. , 2008, Methods.

[26]  P. Schwille,et al.  Total internal reflection fluorescence correlation spectroscopy: effects of lateral diffusion and surface-generated fluorescence. , 2008, Biophysical journal.

[27]  A. Ladokhin,et al.  Membrane insertion pathway of annexin B12: thermodynamic and kinetic characterization by fluorescence correlation spectroscopy and fluorescence quenching. , 2008, Biochemistry.

[28]  Bin Wu,et al.  Fluorescence correlation spectroscopy of finite-sized particles. , 2008, Biophysical journal.

[29]  P. Schwille,et al.  Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. , 2008, Biophysical journal.

[30]  G. Blin,et al.  Quantitative analysis of the binding of ezrin to large unilamellar vesicles containing phosphatidylinositol 4,5 bisphosphate. , 2008, Biophysical journal.

[31]  Andrei L Lomize,et al.  The role of hydrophobic interactions in positioning of peripheral proteins in membranes , 2007, BMC Structural Biology.

[32]  Thomas Dertinger,et al.  Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[33]  R. Mumper,et al.  Preparation and Characterization of Nickel Nanoparticles for Binding to His-tag Proteins and Antigens , 2007, Pharmaceutical Research.

[34]  S. Korsmeyer,et al.  A Membrane-targeted BID BCL-2 Homology 3 Peptide Is Sufficient for High Potency Activation of BAX in Vitro* , 2006, Journal of Biological Chemistry.

[35]  D. Murray,et al.  The role of electrostatics in protein-membrane interactions. , 2006, Biochimica et biophysica acta.

[36]  W. Webb,et al.  Quantification of α-Synuclein Binding to Lipid Vesicles Using Fluorescence Correlation Spectroscopy , 2006 .

[37]  John F. Nagle,et al.  Structure of Fully Hydrated Fluid Phase Lipid Bilayers with Monounsaturated Chains , 2006, The Journal of Membrane Biology.

[38]  Michael J Taussig,et al.  Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on ni-nitrilotriacetic acid surfaces. , 2006, Analytical chemistry.

[39]  Wonhwa Cho,et al.  Membrane-protein interactions in cell signaling and membrane trafficking. , 2005, Annual review of biophysics and biomolecular structure.

[40]  S. McLaughlin,et al.  Fluorescence correlation spectroscopy studies of Peptide and protein binding to phospholipid vesicles. , 2004, Biophysical journal.

[41]  Gabriele Müller,et al.  Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy and confocal imaging. , 2003, Journal of molecular biology.

[42]  Manuel Prieto,et al.  Quantifying molecular partition into model systems of biomembranes: an emphasis on optical spectroscopic methods. , 2003, Biochimica et biophysica acta.

[43]  M. Bally,et al.  Attaching histidine-tagged peptides and proteins to lipid-based carriers through use of metal-ion-chelating lipids. , 2002, Biochimica et biophysica acta.

[44]  S. Munro Organelle identity and the targeting of peripheral membrane proteins. , 2002, Current opinion in cell biology.

[45]  R. Ebright,et al.  Site-specific incorporation of fluorescent probes into protein: hexahistidine-tag-mediated fluorescent labeling with (Ni(2+):nitrilotriacetic Acid (n)-fluorochrome conjugates. , 2001, Journal of the American Chemical Society.

[46]  W. Cho,et al.  Membrane binding assays for peripheral proteins. , 2001, Analytical biochemistry.

[47]  B Honig,et al.  Membrane binding of peptides containing both basic and aromatic residues. Experimental studies with peptides corresponding to the scaffolding region of caveolin and the effector region of MARCKS. , 2000, Biochemistry.

[48]  J Enderlein,et al.  Highly efficient optical detection of surface-generated fluorescence , 1999, Photonics West - Biomedical Optics.

[49]  S. Fleischer,et al.  Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots , 1970, Lipids.

[50]  De Vries Computational microscopy of cyclodextrin mediated cholesterol extraction from lipid model membranes , 2013 .

[51]  P. Schwille,et al.  Fluorescence correlation spectroscopy to examine protein-lipid interactions in membranes. , 2013, Methods in molecular biology.

[52]  P. Schwille,et al.  Fluorescence correlation spectroscopy in membrane structure elucidation. , 2009, Biochimica et biophysica acta.

[53]  A. Hinderliter,et al.  Protein-lipid interactions role of membrane plasticity and lipid specificity on peripheral protein interactions. , 2009, Methods in enzymology.

[54]  J. Nagle,et al.  Temperature dependence of structure, bending rigidity, and bilayer interactions of dioleoylphosphatidylcholine bilayers. , 2008, Biophysical journal.

[55]  Petra Schwille,et al.  State of the Art and Novel Trends in Fluorescence Correlation Spectroscopy , 2008 .

[56]  W. Webb,et al.  Quantification of alpha-synuclein binding to lipid vesicles using fluorescence correlation spectroscopy. , 2006, Biophysical journal.

[57]  S. White,et al.  Protein folding in membranes: determining energetics of peptide-bilayer interactions. , 1998, Methods in enzymology.

[58]  D. S. Dimitrov,et al.  A mechanism of liposome electroformation , 1988 .