Martini Force Field Parameters for Glycolipids.

We present an extension of the Martini coarse-grained force field to glycolipids. The glycolipids considered here are the glycoglycerolipids monogalactosyldiacylglycerol (MGDG), sulfoquinovosyldiacylglycerol (SQDG), digalactosyldiacylglycerol (DGDG), and phosphatidylinositol (PI) and its phosphorylated forms (PIP, PIP2), as well as the glycosphingolipids galactosylceramide (GCER) and monosialotetrahexosylganglioside (GM1). The parametrization follows the same philosophy as was used previously for lipids, proteins, and carbohydrates focusing on the reproduction of partitioning free energies of small compounds between polar and nonpolar solvents. Bonded parameters are optimized by comparison to lipid conformations sampled with an atomistic force field, in particular with respect to the representation of the most populated states around the glycosidic linkage. Simulations of coarse-grained glycolipid model membranes show good agreement with atomistic simulations as well as experimental data available, especially concerning structural properties such as electron densities, area per lipid, and membrane thickness. Our coarse-grained model opens the way to large scale simulations of biological processes in which glycolipids are important, including recognition, sorting, and clustering of both external and membrane bound proteins.

[1]  H. Sakai,et al.  Membrane properties of mixed ganglioside GM1/phosphatidylcholine monolayers , 2004 .

[2]  K. Tamada,et al.  Self-assembly of synthetic glycolipid/water systems. , 1999, Advances in colloid and interface science.

[3]  A. Bunker,et al.  Glycolipid membranes through atomistic simulations: effect of glucose and galactose head groups on lipid bilayer properties. , 2007, Journal of Physical Chemistry B.

[4]  Kai Simons,et al.  Lipid Rafts As a Membrane-Organizing Principle , 2010, Science.

[5]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[6]  J. Slotte,et al.  How the molecular features of glycosphingolipids affect domain formation in fluid membranes. , 2009, Biochimica et biophysica acta.

[7]  J. Green,et al.  The phase behavior of monogalactosyl, digalactosyl, and sulphoquinovosyl diglycerides. , 1973, Biochimica et biophysica acta.

[8]  M. DeMarco,et al.  Atomic-resolution conformational analysis of the GM3 ganglioside in a lipid bilayer and its implications for ganglioside-protein recognition at membrane surfaces. , 2008, Glycobiology.

[9]  Hayder Amin,et al.  Membrane protein sequestering by ionic protein-lipid interactions , 2011, Nature.

[10]  Changbong Hyeon,et al.  Capturing the essence of folding and functions of biomolecules using coarse-grained models. , 2011, Nature communications.

[11]  W. Williams,et al.  The phase behaviour of 1,2-diacyl-3-monogalactosyl-sn-glycerol derivatives , 1985 .

[12]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[13]  R. Templer,et al.  Evidence that phosphatidylinositol promotes curved membrane interfaces. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[14]  D. Tieleman,et al.  Using the Wimley-White Hydrophobicity Scale as a Direct Quantitative Test of Force Fields: The MARTINI Coarse-Grained Model. , 2011, Journal of chemical theory and computation.

[15]  O. Glatter,et al.  Time and temperature dependent aggregation behaviour of the ganglioside GM1 in aqueous solution. , 1998, Chemistry and physics of lipids.

[16]  F. Huang,et al.  Effect of glycolipids on the phase behavior and dynamic properties of phospholipid liposomes. , 1992, Biochemical and biophysical research communications.

[17]  P. Jedlovszky,et al.  Molecular dynamics simulation of GM1 gangliosides embedded in a phospholipid membrane , 2006 .

[18]  L. J. Lis,et al.  A time-resolved synchrotron X-ray study of a crystalline phase bilayer transition and packing in a saturated monogalactosyldiacylglycerol-water system , 1986 .

[19]  R. Pastor,et al.  Molecular dynamics simulations of PIP2 and PIP3 in lipid bilayers: determination of ring orientation, and the effects of surface roughness on a Poisson-Boltzmann description. , 2009, Biophysical journal.

[20]  M. Mezei,et al.  A molecular dynamics investigation of lipid bilayer perturbation by PIP2. , 2010, Biophysical journal.

[21]  Siewert J Marrink,et al.  Lipids on the move: simulations of membrane pores, domains, stalks and curves. , 2009, Biochimica et biophysica acta.

[22]  I. Vattulainen,et al.  Modeling glycolipids: take one. , 2005, Cellular & molecular biology letters.

[23]  S. Neya,et al.  Formation of GM1 ganglioside clusters on the lipid membrane containing sphingomyeline and cholesterol. , 2012, The journal of physical chemistry. B.

[24]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[25]  A. Imberty,et al.  Structure and conformation of complex carbohydrates of glycoproteins, glycolipids, and bacterial polysaccharides. , 1999, Annual review of biophysics and biomolecular structure.

[26]  P. V. Balaji,et al.  Characterization of symmetric and asymmetric lipid bilayers composed of varying concentrations of ganglioside GM1 and DPPC. , 2008, The journal of physical chemistry. B.

[27]  S. Melchionna,et al.  Molecular Dynamics Simulation of a GM3 Ganglioside Bilayer , 2004 .

[28]  Alexander P. Lyubartsev,et al.  Recent development in computer simulations of lipid bilayers , 2011 .

[29]  Durba Sengupta,et al.  Polarizable Water Model for the Coarse-Grained MARTINI Force Field , 2010, PLoS Comput. Biol..

[30]  S. Marrink,et al.  Molecular view on protein sorting into liquid-ordered membrane domains mediated by gangliosides and lipid anchors. , 2013, Faraday discussions.

[31]  T. D. Connell,et al.  Cholera toxin, LT-I, LT-IIa and LT-IIb: the critical role of ganglioside binding in immunomodulation by Type I and Type II heat-labile enterotoxins , 2007, Expert review of vaccines.

[32]  A. Boyanov,et al.  Stereochemistry and size of sugar head groups determine structure and phase behavior of glycolipid membranes: densitometric, calorimetric, and X-ray studies. , 1991, Biochemistry.

[33]  Siewert J Marrink,et al.  Simulation of gel phase formation and melting in lipid bilayers using a coarse grained model. , 2005, Chemistry and physics of lipids.

[34]  Kai Simons,et al.  Revitalizing membrane rafts: new tools and insights , 2010, Nature Reviews Molecular Cell Biology.

[35]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[36]  J. Prestegard,et al.  Presentation of membrane-anchored glycosphingolipids determined from molecular dynamics simulations and NMR paramagnetic relaxation rate enhancement. , 2010, Journal of the American Chemical Society.

[37]  I. Vattulainen,et al.  Effect of galactosylceramide on the dynamics of cholesterol-rich lipid membranes. , 2011, The journal of physical chemistry. B.

[38]  Markus Deserno,et al.  Mesoscopic membrane physics: concepts, simulations, and selected applications. , 2009, Macromolecular rapid communications.

[39]  A. Surolia,et al.  Glycosphingolipids in microdomain formation and their spatial organization , 2010, FEBS letters.

[40]  B. Green,et al.  Biochemical and biophysical properties of thylakoid acyl lipids , 1991 .

[41]  P. V. Balaji,et al.  Dynamics of Ganglioside Headgroup in Lipid Environment: Molecular Dynamics Simulations of GM1 Embedded in Dodecylphosphocholine Micelle , 2001 .

[42]  J. Barber,et al.  Monogalactosyldiacylglycerol: The most abundant polar lipid in nature , 1983 .

[43]  Siewert J Marrink,et al.  Dimerization of Amino Acid Side Chains: Lessons from the Comparison of Different Force Fields. , 2012, Journal of chemical theory and computation.

[44]  R. Duclos,et al.  Structure and properties of totally synthetic galacto- and gluco-cerebrosides. , 1999, Journal of lipid research.

[45]  Andrzej J. Rzepiela,et al.  Reconstruction of atomistic details from coarse‐grained structures , 2010, J. Comput. Chem..

[46]  J. Prestegard,et al.  MEMBRANE AND SOLUTION CONFORMATIONS OF MONOGALACTOSYLDIACYLGLYCEROL USING NMR/MOLECULAR MODELING METHODS , 1995 .

[47]  Mark S. P. Sansom,et al.  PIP2-Binding Site in Kir Channels: Definition by Multiscale Biomolecular Simulations , 2009, Biochemistry.

[48]  L. Johnston,et al.  Atomic force microscopy studies of ganglioside GM1 domains in phosphatidylcholine and phosphatidylcholine/cholesterol bilayers. , 2001, Biophysical journal.

[49]  Siewert J Marrink,et al.  Martini Coarse-Grained Force Field: Extension to Carbohydrates. , 2009, Journal of chemical theory and computation.

[50]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[51]  Wilfred F. van Gunsteren,et al.  A generalized reaction field method for molecular dynamics simulations , 1995 .

[52]  K. R. Jeffrey,et al.  Molecular dynamics simulations and 2H NMR study of the GalCer/DPPG lipid bilayer. , 2005, Biophysical journal.

[53]  Martin Dahlberg,et al.  Molecular dynamics simulations of membranes composed of glycolipids and phospholipids. , 2012, The journal of physical chemistry. B.

[54]  G. Voth Coarse-Graining of Condensed Phase and Biomolecular Systems , 2008 .

[55]  T. E. Thompson,et al.  The metastability of glucosyl ceramide in aqueous phase: effect of hydration and phosphatidylcholines of various chain length , 1989 .

[56]  H. Berendsen,et al.  COMPUTER-SIMULATION OF MOLECULAR-DYNAMICS - METHODOLOGY, APPLICATIONS, AND PERSPECTIVES IN CHEMISTRY , 1990 .

[57]  Roberto D. Lins,et al.  A new GROMOS force field for hexopyranose‐based carbohydrates , 2005, J. Comput. Chem..

[58]  J. Šponer,et al.  Molecular Dynamics Simulation of GM1 in Phospholipid Bilayer , 2002, Journal of biomolecular structure & dynamics.

[59]  P. Jedlovszky,et al.  GM1 ganglioside embedded in a hydrated DOPC membrane: a molecular dynamics simulation study. , 2009, The journal of physical chemistry. B.

[60]  Wilfred F van Gunsteren,et al.  Conformational and dynamical properties of disaccharides in water: a molecular dynamics study. , 2006, Biophysical journal.

[61]  S. Dvinskikh,et al.  NMR studies of membranes composed of glycolipids and phospholipids. , 2007, Biochimica et biophysica acta.

[62]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[63]  Roland Faller,et al.  Coarse-grained modeling of lipids. , 2009, Chemistry and physics of lipids.

[64]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[65]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[66]  J. Slotte,et al.  Cholesterol interacts with lactosyl and maltosyl cerebrosides but not with glucosyl or galactosyl cerebrosides in mixed monolayers. , 1993, Biochemistry.

[67]  G. Rapp,et al.  Temperature scanning simultaneous small- and wide-angle X-ray scattering studies on glycolipid vesicles: areas, expansion coefficients and hydration , 1998 .