A Consideration on Learning by Rule Generation from Tables with Missing Values

This paper considers rough set-based machine learning from tables. We coped with rule generation from tables with non-deterministic information, and proposed the NIS-Apriori algorithm. After executing this algorithm, as a side effect we obtain tables causing the best criterion values of the implications and tables causing the worst criterion values of the implications. We apply this property to tables with missing values, and propose the new framework rough set-based machine learning by rule generation. By showing examples, we describe the overview of this new framework.

[1]  Hiroshi Sakai,et al.  Apriori-Based Rule Generation in Incomplete Information Databases and Non-Deterministic Information Systems , 2014, Fundam. Informaticae.

[2]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[3]  Hiroshi Sakai,et al.  Twofold rough approximations under incomplete information , 2013, Int. J. Gen. Syst..

[4]  Ewa Orlowska,et al.  Representation of Nondeterministic Information , 1984, Theor. Comput. Sci..

[5]  Witold Lipski,et al.  On semantic issues connected with incomplete information databases , 1979, ACM Trans. Database Syst..

[6]  Zdzisław Pawlak,et al.  Systemy Informacyjne. Podstawy Teoretyczne , 1983 .

[7]  John F. Roddick,et al.  Association mining , 2006, CSUR.

[8]  Hiroshi Sakai,et al.  An Overview of the getRNIA System for Non-deterministic Data , 2013, KES.

[9]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[10]  Marzena Kryszkiewicz,et al.  Rough Set Approach to Incomplete Information Systems , 1998, Inf. Sci..

[11]  Andrzej Skowron,et al.  The Discernibility Matrices and Functions in Information Systems , 1992, Intelligent Decision Support.

[12]  Hiroshi Sakai,et al.  The Completeness of NIS-Apriori Algorithm and a Software Tool GetRNIA , 2014, 2014 IIAI 3rd International Conference on Advanced Applied Informatics.

[13]  J. Aldrich R.A. Fisher and the making of maximum likelihood 1912-1922 , 1997 .

[14]  Jerzy W. Grzymala-Busse,et al.  Data with Missing Attribute Values: Generalization of Indiscernibility Relation and Rule Induction , 2004, Trans. Rough Sets.

[15]  Hiroshi Sakai,et al.  Rules and Apriori Algorithm in Non-deterministic Information Systems , 2006, Trans. Rough Sets.

[16]  Hiroshi Sakai,et al.  Basic Algorithms and Tools for Rough Non-deterministic Information Analysis , 2004, Trans. Rough Sets.