Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation

New numerical techniques are presented for the solution of a two-dimensional anomalous sub-diffusion equation with time fractional derivative. In these methods, standard central difference approximation is used for the spatial discretization, and, for the time stepping, two new alternating direction implicit (ADI) schemes based on the L"1 approximation and backward Euler method are considered. The two ADI schemes are constructed by adding two different small terms, which are different from standard ADI methods. The solvability, unconditional stability and H^1 norm convergence are proved. Numerical results are presented to support our theoretical analysis and indicate the efficiency of both methods.

[1]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[2]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[3]  J. Douglas,et al.  A general formulation of alternating direction methods , 1964 .

[4]  Fawang Liu,et al.  Stability and convergence of an implicit numerical method for the non-linear fractional reaction–subdiffusion process , 2009 .

[5]  Hermann Brunner,et al.  Numerical simulations of 2D fractional subdiffusion problems , 2010, J. Comput. Phys..

[6]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[7]  Fawang Liu,et al.  Finite Difference Approximation for Two-Dimensional Time Fractional Diffusion Equation , 2007 .

[8]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[9]  Solomon,et al.  Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. , 1993, Physical review letters.

[10]  Fawang Liu,et al.  An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation , 2010 .

[11]  W. Wyss The fractional diffusion equation , 1986 .

[12]  R. Gorenflo,et al.  Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .

[13]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[14]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[15]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[16]  Santos B. Yuste,et al.  Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..

[17]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[18]  Jichun Li,et al.  Finite Difference Methods for Elliptic Equations , 2008 .

[19]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[20]  Bruce J. West,et al.  Fractional Diffusion Equation , 1999 .

[21]  Xuan Zhao,et al.  A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions , 2011, J. Comput. Phys..

[22]  Fawang Liu,et al.  Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..

[23]  Fawang Liu,et al.  An implicit RBF meshless approach for time fractional diffusion equations , 2011 .

[24]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[25]  J. J. Douglas Alternating direction methods for three space variables , 1962 .

[26]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[27]  Fawang Liu,et al.  Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation , 2010, Numerical Algorithms.

[28]  Fawang Liu,et al.  Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation , 2010, SIAM J. Sci. Comput..

[29]  Mehdi Maerefat,et al.  Explicit and implicit finite difference schemes for fractional Cattaneo equation , 2010, J. Comput. Phys..

[30]  F. Mainardi The fundamental solutions for the fractional diffusion-wave equation , 1996 .

[31]  I. Podlubny Fractional differential equations , 1998 .

[32]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[33]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[34]  Xianjuan Li,et al.  Finite difference/spectral approximations for the fractional cable equation , 2010, Math. Comput..

[35]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[36]  O. Agrawal Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain , 2002 .

[37]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[38]  Weihua Deng,et al.  Numerical algorithm for the time fractional Fokker-Planck equation , 2007, J. Comput. Phys..