Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation
暂无分享,去创建一个
[1] Santos B. Yuste,et al. An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..
[2] Chuanju Xu,et al. Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..
[3] J. Douglas,et al. A general formulation of alternating direction methods , 1964 .
[4] Fawang Liu,et al. Stability and convergence of an implicit numerical method for the non-linear fractional reaction–subdiffusion process , 2009 .
[5] Hermann Brunner,et al. Numerical simulations of 2D fractional subdiffusion problems , 2010, J. Comput. Phys..
[6] Xianjuan Li,et al. A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..
[7] Fawang Liu,et al. Finite Difference Approximation for Two-Dimensional Time Fractional Diffusion Equation , 2007 .
[8] J. Bouchaud,et al. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .
[9] Solomon,et al. Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. , 1993, Physical review letters.
[10] Fawang Liu,et al. An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation , 2010 .
[11] W. Wyss. The fractional diffusion equation , 1986 .
[12] R. Gorenflo,et al. Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .
[13] Fawang Liu,et al. New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..
[14] Fawang Liu,et al. A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..
[15] B. Henry,et al. The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .
[16] Santos B. Yuste,et al. Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..
[17] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[18] Jichun Li,et al. Finite Difference Methods for Elliptic Equations , 2008 .
[19] H. H. Rachford,et al. The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .
[20] Bruce J. West,et al. Fractional Diffusion Equation , 1999 .
[21] Xuan Zhao,et al. A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions , 2011, J. Comput. Phys..
[22] Fawang Liu,et al. Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..
[23] Fawang Liu,et al. An implicit RBF meshless approach for time fractional diffusion equations , 2011 .
[24] Zhi‐zhong Sun,et al. A fully discrete difference scheme for a diffusion-wave system , 2006 .
[25] J. J. Douglas. Alternating direction methods for three space variables , 1962 .
[26] R. Hilfer. Applications Of Fractional Calculus In Physics , 2000 .
[27] Fawang Liu,et al. Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation , 2010, Numerical Algorithms.
[28] Fawang Liu,et al. Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation , 2010, SIAM J. Sci. Comput..
[29] Mehdi Maerefat,et al. Explicit and implicit finite difference schemes for fractional Cattaneo equation , 2010, J. Comput. Phys..
[30] F. Mainardi. The fundamental solutions for the fractional diffusion-wave equation , 1996 .
[31] I. Podlubny. Fractional differential equations , 1998 .
[32] Zhi-Zhong Sun,et al. A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..
[33] Mingrong Cui,et al. Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..
[34] Xianjuan Li,et al. Finite difference/spectral approximations for the fractional cable equation , 2010, Math. Comput..
[35] Weihua Deng,et al. Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..
[36] O. Agrawal. Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain , 2002 .
[37] W. Schneider,et al. Fractional diffusion and wave equations , 1989 .
[38] Weihua Deng,et al. Numerical algorithm for the time fractional Fokker-Planck equation , 2007, J. Comput. Phys..