Monitoring electron spin fluctuations with paramagnetic relaxation enhancement.

[1]  P. Grandinetti,et al.  Silicon-29 echo train coherence lifetimes and geminal 2J-couplings in network modified silicate glasses. , 2021, Journal of magnetic resonance.

[2]  C. Grey,et al.  Endogenous 17O Dynamic Nuclear Polarization of Gd-Doped CeO2 from 100 to 370 K , 2021, The Journal of Physical Chemistry C.

[3]  A. York,et al.  Nuclear spin relaxation as a probe of zeolite acidity: a combined NMR and TPD investigation of pyridine in HZSM-5. , 2021, Physical chemistry chemical physics : PCCP.

[4]  Z. Bakenov,et al.  Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: A review , 2021 .

[5]  R. Ameloot,et al.  Benchtop In Situ Measurement of Full Adsorption Isotherms by NMR. , 2021, Journal of the American Chemical Society.

[6]  Rosy,et al.  Structure and Functionality of an Alkylated LixSiyOz Interphase for High-Energy Cathodes from DNP-ssNMR Spectroscopy , 2021, Journal of the American Chemical Society.

[7]  M. Leskes,et al.  Oxygen Vacancy Distribution in Yttrium-Doped Ceria from 89Y–89Y Correlations via Dynamic Nuclear Polarization Solid-State NMR , 2021, The journal of physical chemistry letters.

[8]  A. Pell,et al.  A method to calculate the NMR spectra of paramagnetic species using thermalized electronic relaxation. , 2021, Journal of magnetic resonance.

[9]  S. Eaton,et al.  Electron spin relaxation of P1 centers in synthetic diamonds with potential as B1 standards for DNP enhanced NMR. , 2020, Journal of magnetic resonance.

[10]  M. Pruski,et al.  Dynamic Nuclear Polarization of Metal-Doped Oxide Glasses: A Test of the Generality of Paramagnetic Metal Polarizing Agents , 2020 .

[11]  M. Leskes,et al.  Enabling Natural Abundance 17O Solid-State NMR by Direct Polarization from Paramagnetic Metal Ions , 2020, The journal of physical chemistry letters.

[12]  Chunjoong Kim,et al.  Endogenous Dynamic Nuclear Polarization for Sensitivity Enhancement in Solid-State NMR of Electrode Materials , 2020, The journal of physical chemistry. C, Nanomaterials and interfaces.

[13]  M. Gaultois,et al.  When do Anisotropic Magnetic Susceptibilities Lead to Large NMR Shifts? Exploring Particle Shape Effects in the Battery Electrode Material LiFePO4. , 2019, Journal of the American Chemical Society.

[14]  Erika L. Sesti,et al.  Electron Decoupling with Chirped Microwave Pulses for Rapid Signal Acquisition and Electron Saturation Recovery. , 2019, Angewandte Chemie.

[15]  J. Schmedt auf der Günne,et al.  Blind spheres of paramagnetic dopants in solid state NMR. , 2019, Physical chemistry chemical physics : PCCP.

[16]  C. Grey,et al.  Paramagnetic NMR in solution and the solid state. , 2019, Progress in nuclear magnetic resonance spectroscopy.

[17]  A. Barra,et al.  De novo prediction of cross-effect efficiency for magic angle spinning dynamic nuclear polarization. , 2019, Physical chemistry chemical physics : PCCP.

[18]  B. Corzilius Paramagnetic Metal Ions for Dynamic Nuclear Polarization , 2018 .

[19]  A. Frenkel,et al.  Endogenous Dynamic Nuclear Polarization for Natural Abundance 17O and Lithium NMR in the Bulk of Inorganic Solids. , 2018, Journal of the American Chemical Society.

[20]  S. Eaton,et al.  Measurement of T1e, T1N, T1HE, T2e, and T2HE by Pulse EPR at X-Band for Nitroxides at Concentrations Relevant to Solution DNP , 2018, Applied Magnetic Resonance.

[21]  S. Eaton,et al.  Measurement of T1e, T1N, T1HE, T2e, and T2HE by Pulse EPR at X-Band for Nitroxides at Concentrations Relevant to Solution DNP , 2018, Applied Magnetic Resonance.

[22]  M. Leskes,et al.  Paramagnetic Metal-Ion Dopants as Polarization Agents for Dynamic Nuclear Polarization NMR Spectroscopy in Inorganic Solids. , 2018, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  Songi Han,et al.  Reversal of Paramagnetic Effects by Electron Spin Saturation , 2018 .

[24]  C. Jaroniec,et al.  Rapid Quantitative Measurements of Paramagnetic Relaxation Enhancements in Cu(II)-Tagged Proteins by Proton-Detected Solid-State NMR Spectroscopy. , 2017, The journal of physical chemistry letters.

[25]  Monu Kaushik,et al.  Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. , 2017, Progress in nuclear magnetic resonance spectroscopy.

[26]  R. Seshadri,et al.  Correlating Local Compositions and Structures with the Macroscopic Optical Properties of Ce3+-Doped CaSc2O4, an Efficient Green-Emitting Phosphor , 2017 .

[27]  Ryan J. McCarty,et al.  Solid-state NMR and short-range order in crystalline oxides and silicates: a new tool in paramagnetic resonances. , 2017, Acta crystallographica. Section C, Structural chemistry.

[28]  H. Schwalbe,et al.  Gd(iii) and Mn(ii) complexes for dynamic nuclear polarization: small molecular chelate polarizing agents and applications with site-directed spin labeling of proteins. , 2016, Physical chemistry chemical physics : PCCP.

[29]  Ryan J. McCarty,et al.  Transition Metal Dopant Cation Distributions in MgO and CaO: New Inferences from Paramagnetically Shifted Resonances in 17O, 25Mg, and 43Ca NMR Spectra , 2016 .

[30]  J. Weber,et al.  Homogeneity of doping with paramagnetic ions by NMR. , 2016, Physical chemistry chemical physics : PCCP.

[31]  Daniel Lee,et al.  Is solid-state NMR enhanced by dynamic nuclear polarization? , 2015, Solid state nuclear magnetic resonance.

[32]  F. Blanc,et al.  Computational Identification and Experimental Realization of Lithium Vacancy Introduction into the Olivine LiMgPO4 , 2015 .

[33]  Tingfeng Yi,et al.  Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries , 2015 .

[34]  L. Gladden,et al.  Interpretation of NMR Relaxation as a Tool for Characterising the Adsorption Strength of Liquids inside Porous Materials , 2014, Chemistry.

[35]  R. Griffin,et al.  Dynamic Nuclear Polarization of 1H, 13C, and 59Co in a Tris(ethylenediamine)cobalt(III) Crystalline Lattice Doped with Cr(III) , 2014, Journal of the American Chemical Society.

[36]  R. Griffin,et al.  Paramagnet induced signal quenching in MAS-DNP experiments in frozen homogeneous solutions. , 2013, Journal of magnetic resonance.

[37]  M. Balasubramanian,et al.  Local Environments of Dilute Activator Ions in the Solid-State Lighting Phosphor Y3–xCexAl5O12 , 2013 .

[38]  Yun-Sung Lee,et al.  LiMnPO4 - A next generation cathode material for lithium-ion batteries , 2013 .

[39]  M Stanley Whittingham,et al.  Spin-transfer pathways in paramagnetic lithium transition-metal phosphates from combined broadband isotropic solid-state MAS NMR spectroscopy and DFT calculations. , 2012, Journal of the American Chemical Society.

[40]  G. Pake Paramagnetic Resonance: An Introductory Monograph , 2012 .

[41]  W. T. Franks,et al.  The effect of biradical concentration on the performance of DNP-MAS-NMR. , 2012, Journal of magnetic resonance.

[42]  S. Misra Relaxation of Paramagnetic Spins , 2011 .

[43]  R. Griffin,et al.  High-field dynamic nuclear polarization with high-spin transition metal ions. , 2011, Journal of the American Chemical Society.

[44]  V. Bakhmutov Strategies for solid-state NMR studies of materials: from diamagnetic to paramagnetic porous solids. , 2011, Chemical reviews.

[45]  A. Feintuch,et al.  Theoretical aspects of dynamic nuclear polarization in the solid state - the solid effect. , 2010, Journal of magnetic resonance.

[46]  Lynn F. Gladden,et al.  Comparing Strengths of Surface Interactions for Reactants and Solvents in Porous Catalysts Using Two-Dimensional NMR Relaxation Correlations , 2009 .

[47]  Gavin W. Morley,et al.  A multifrequency high-field pulsed electron paramagnetic resonance/electron-nuclear double resonance spectrometer. , 2008, The Review of scientific instruments.

[48]  Gavin W. Morley,et al.  A multi-frequency high-field pulsed EPR / ENDOR spectrometer , 2008, 0803.3054.

[49]  J. Stebbins,et al.  Vacancy and Cation Distribution in Yttria-Doped Ceria: An 89Y and 17O MAS NMR Study , 2007 .

[50]  Guido Pintacuda,et al.  NMR structure determination of protein-ligand complexes by lanthanide labeling. , 2007, Accounts of chemical research.

[51]  C. Grey,et al.  High Field Multinuclear NMR Investigation of the SEI Layer in Lithium Rechargeable Batteries , 2005 .

[52]  C. Grey,et al.  NMR studies of cathode materials for lithium-ion rechargeable batteries. , 2004, Chemical reviews.

[53]  B. Bowler,et al.  Electron spin lattice relaxation rates for S = 12 molecular species in glassy matrices or magnetically dilute solids at temperatures between 10 and 300 K. , 1999, Journal of magnetic resonance.

[54]  J S Petersson,et al.  EPR and DNP properties of certain novel single electron contrast agents intended for oximetric imaging. , 1998, Journal of magnetic resonance.

[55]  T. Rojo,et al.  7Li and 31P nuclear magnetic resonance studies of Li1−3xMgFexPO4 , 1998 .

[56]  K. MacKenzie,et al.  Effect of lanthanides on the relaxation rates of 89Y and 29Si in yttrium silicon oxynitride phases. , 1995, Solid state nuclear magnetic resonance.

[57]  Sabyasachi Sen,et al.  Structural role of Nd3+ and Al3+ cations in SiO2 glass : a 29Si MAS-NMR spin-lattice relaxation, 27Al NMR and EPR study , 1995 .

[58]  R. Wasylishen,et al.  31P NMR Study of Powder and Single-Crystal Samples of Ammonium Dihydrogen Phosphate: Effect of Homonuclear Dipolar Coupling , 1994 .

[59]  D. Longmore The principles of magnetic resonance. , 1989, British medical bulletin.

[60]  A. J. Vega Relaxation in spin-echo and spin-lock experiments , 1985 .

[61]  J. Majling,et al.  Crystal structure of lithium magnesium phosphate, LiMgPO4: Crystal chemistry of the olivine-type compounds , 1982 .

[62]  John S. Waugh,et al.  NMR in rotating solids , 1979 .

[63]  John L. Markley,et al.  Spin‐Lattice Relaxation Measurements in Slowly Relaxing Complex Spectra , 1971 .

[64]  I. Lowe,et al.  Nuclear Spin-Lattice Relaxation via Paramagnetic Centers , 1968 .

[65]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[66]  S. Geller,et al.  Refinement of the structure of LiMnPO4 , 1960 .

[67]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[68]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[69]  M. Leskes,et al.  Dynamic nuclear polarization in inorganic solids from paramagnetic metal ion dopants , 2021, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering.

[70]  P. Grandinetti,et al.  Silicon-29 echo train coherence lifetimes and geminal 2 J -couplings in network modified silicate glasses Journal of Magnetic Resonance , 2021 .

[71]  Robert Kohl,et al.  Electron Paramagnetic Resonance Of Transition Ions , 2016 .

[72]  C. Copéret,et al.  One hundred fold overall sensitivity enhancements for Silicon-29 NMR spectroscopy of surfaces by dynamic nuclear polarization with CPMG acquisition , 2012 .

[73]  E. Hahn,et al.  Spin Echoes , 2011 .

[74]  R. Tycko,et al.  Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder. , 2009, Journal of magnetic resonance.

[75]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[76]  L. Vegard,et al.  Die Konstitution der Mischkristalle und die Raumfüllung der Atome , 1921 .