Solar thermoelectric generator performance relative to air speed

Abstract The electrical characteristics of a solar thermoelectric generator (STEG) are measured. The STEG device is novel in that it requires no external pumps such as a water refrigeration unit to maintain a thermal differential. The heat source is simulated solar radiation heating a double walled evacuated tube. The heat sink is a CPU cooler subjected to simulated wind energy. The peak power performance of the STEG for a fixed heat input and a varying forced convection brought upon by the artificial wind is reported. The STEG’s thermoelectric power output under naturally occurring solar and wind energy is also reported. A discussion on the thermoelectric effect presents experimental results showing the effect of varying the circuit’s load resistance on a Bi 2 Te 3 module’s electromotive force, electrical resistance, and thermal resistivity.

[1]  Pendar Samadian,et al.  Cogeneration solar system using thermoelectric module and fresnel lens , 2014 .

[2]  E. T. El Shenawy,et al.  Optimal operation of thermoelectric cooler driven by solar thermoelectric generator , 2006 .

[3]  Matteo Chiesa,et al.  Modeling and optimization of solar thermoelectric generators for terrestrial applications , 2012 .

[4]  Cédric Philibert,et al.  Solar Energy Perspectives , 2011 .

[5]  David Infield,et al.  Design and thermal analysis of a two stage solar concentrator for combined heat and thermoelectric power generation , 2000 .

[6]  Altug Sisman,et al.  Characterization of a thermoelectric generator at low temperatures , 2012 .

[7]  Kenneth McEnaney,et al.  Modeling of concentrating solar thermoelectric generators , 2011 .

[8]  Frédéric Lesage,et al.  Solar thermal energy conversion to electrical power , 2014 .

[9]  José María Sala,et al.  Technological recovery potential of waste heat in the industry of the Basque Country , 1997 .

[10]  Maria Telkes,et al.  Solar Thermoelectric Generators , 1954 .

[11]  K. T. Chau,et al.  An automotive thermoelectric–photovoltaic hybrid energy system using maximum power point tracking , 2011 .

[12]  Frédéric Lesage,et al.  Optimal electrical load for peak power of a thermoelectric module with a solar electric application , 2013 .

[13]  Chao Li,et al.  Effects of environmental factors on the conversion efficiency of solar thermoelectric co-generators comprising parabola trough collectors and thermoelectric modules without evacuated tubular collector , 2014 .

[14]  Frédéric Lesage,et al.  Experimental analysis of peak power output of a thermoelectric liquid-to-liquid generator under an increasing electrical load resistance , 2013 .

[15]  Bekir Sami Yilbas,et al.  Thermodynamic analysis of a thermoelectric power generator in relation to geometric configuration device pins , 2014 .

[16]  Lin Zhang,et al.  Investigation of prototype thermoelectric domestic-ventilator , 2009 .

[17]  M. M. Kaila,et al.  Solar thermoelectric generation using bismuth telluride alloys , 1980 .

[18]  Peng Li,et al.  Thermal design and management for performance optimization of solar thermoelectric generator , 2012 .

[19]  Jie Ji,et al.  Parametrical analysis of the design and performance of a solar heat pipe thermoelectric generator unit , 2011 .

[20]  P. Mohanty,et al.  Electricity access for geographically disadvantaged rural communities—technology and policy insights , 2004 .

[21]  Michael F. Hutchinson,et al.  Spatial insolation models for photovoltaic energy in Canada , 2008 .

[22]  J.K. Pedersen,et al.  Numerical Modeling of Thermoelectric Generators With Varing Material Properties in a Circuit Simulator , 2009, IEEE Transactions on Energy Conversion.

[23]  Lauryn L. Baranowski,et al.  Concentrated solar thermoelectric generators , 2012 .

[24]  Yuehong Su,et al.  A study on incorporation of thermoelectric modules with evacuated-tube heat-pipe solar collectors , 2012 .

[25]  Rajeev J. Ram,et al.  Solar Thermoelectric Generator for Micropower Applications , 2009, Journal of Electronic Materials.

[26]  Frédéric Lesage,et al.  Thermoelectric power enhancement by way of flow impedance for fixed thermal input conditions , 2014 .

[27]  Gang Chen,et al.  High-performance flat-panel solar thermoelectric generators with high thermal concentration. , 2011, Nature materials.

[28]  Chih Wu Analysis of waste-heat thermoelectric power generators , 1996 .

[29]  Jincan Chen Thermodynamic analysis of a solar‐driven thermoelectric generator , 1996 .

[30]  Peng Li,et al.  Design of a Concentration Solar Thermoelectric Generator , 2010 .

[31]  Gao Min,et al.  Conversion Efficiency of Thermoelectric Combustion Systems , 2007, IEEE Transactions on Energy Conversion.

[32]  K. P. Suleebka High temperature solar thermoelectric generator , 1979 .

[33]  Gang Chen,et al.  Theoretical efficiency of solar thermoelectric energy generators , 2011 .

[34]  D. Infield,et al.  Design optimization of thermoelectric devices for solar power generation , 1998 .

[35]  Kenneth McEnaney,et al.  Modeling of thin-film solar thermoelectric generators , 2013 .

[36]  Rae-Young Kim,et al.  Analysis and Design of Maximum Power Point Tracking Scheme for Thermoelectric Battery Energy Storage System , 2009, IEEE Transactions on Industrial Electronics.

[37]  Hongxia Xi,et al.  Development and applications of solar-based thermoelectric technologies , 2007 .

[38]  L. B. Harris,et al.  Studies of a thermoelectric generator operating from tubular solar collectors , 1983 .

[39]  S. Pelland,et al.  THE DEVELOPMENT OF PHOTOVOLTAIC RESOURCE MAPS FOR CANADA , 2006 .