Bacterial growth: global effects on gene expression, growth feedback and proteome partition.

[1]  Terence Hwa,et al.  The Innate Growth Bistability and Fitness Landscapes of Antibiotic-Resistant Bacteria , 2013, Science.

[2]  T. Hwa,et al.  Molecular crowding limits translation and cell growth , 2013, Proceedings of the National Academy of Sciences.

[3]  S. Klumpp,et al.  Dilution and the theoretical description of growth-rate dependent gene expression , 2013, Journal of biological engineering.

[4]  T. Hwa,et al.  Coordination of bacterial proteome with metabolism by cyclic AMP signalling , 2013, Nature.

[5]  J. Rabinowitz,et al.  Systems biology: Metabolite turns master regulator , 2013, Nature.

[6]  Michael A Savageau,et al.  Molecular mechanisms of multiple toxin–antitoxin systems are coordinated to govern the persister phenotype , 2013, Proceedings of the National Academy of Sciences.

[7]  S. Klumpp,et al.  Population Dynamics of Bacterial Persistence , 2013, PloS one.

[8]  J. Geiselmann,et al.  Shared control of gene expression in bacteria by transcription factors and global physiology of the cell , 2013, Molecular systems biology.

[9]  U. Sauer,et al.  Dissecting specific and global transcriptional regulation of bacterial gene expression , 2013, Molecular systems biology.

[10]  E. van Nimwegen,et al.  Quantitative analysis of persister fractions suggests different mechanisms of formation among environmental isolates of E. coli , 2013, BMC Microbiology.

[11]  Terence Hwa,et al.  Need-based activation of ammonium uptake in Escherichia coli , 2012, Molecular systems biology.

[12]  K. Gerdes,et al.  Bacterial persistence and toxin-antitoxin loci. , 2012, Annual review of microbiology.

[13]  E. Cox,et al.  Gene location and DNA density determine transcription factor distributions in Escherichia coli , 2012, Molecular systems biology.

[14]  Antoine Danchin,et al.  Scaling up synthetic biology: Do not forget the chassis , 2012, FEBS letters.

[15]  O Shoval,et al.  Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space , 2012, Science.

[16]  A. Arkin,et al.  Contextualizing context for synthetic biology – identifying causes of failure of synthetic biological systems , 2012, Biotechnology journal.

[17]  U. Sauer,et al.  Multidimensional Optimality of Microbial Metabolism , 2012, Science.

[18]  Gábor Balázsi,et al.  Mapping the Environmental Fitness Landscape of a Synthetic Gene Circuit , 2012, PLoS Comput. Biol..

[19]  N. Wingreen,et al.  α-ketoglutarate coordinates carbon and nitrogen utilization via Enzyme I inhibition , 2011, Nature chemical biology.

[20]  Terence Hwa,et al.  Bacterial growth laws and their applications. , 2011, Current opinion in biotechnology.

[21]  K. Gerdes,et al.  Bacterial persistence by RNA endonucleases , 2011, Proceedings of the National Academy of Sciences.

[22]  S. Klumpp Growth-Rate Dependence Reveals Design Principles of Plasmid Copy Number Control , 2011, PloS one.

[23]  N. Philippe,et al.  ppGpp is the major source of growth rate control in E. coli. , 2011, Environmental microbiology.

[24]  Pamela A Silver,et al.  Synthetic circuit identifies subpopulations with sustained memory of DNA damage. , 2011, Genes & development.

[25]  Víctor de Lorenzo,et al.  Beware of metaphors: Chasses and orthogonality in synthetic biology , 2011, Bioengineered bugs.

[26]  T. Hwa,et al.  Interdependence of Cell Growth and Gene Expression: Origins and Consequences , 2010, Science.

[27]  Andrew Wright,et al.  Robust Growth of Escherichia coli , 2010, Current Biology.

[28]  R. Kwok Five hard truths for synthetic biology , 2010, Nature.

[29]  T. Hwa,et al.  Growth Rate-Dependent Global Effects on Gene Expression in Bacteria , 2009, Cell.

[30]  James J. Collins,et al.  Next-Generation Synthetic Gene Networks , 2009, Nature Biotechnology.

[31]  L. You,et al.  Emergent bistability by a growth-modulating positive feedback circuit. , 2009, Nature chemical biology.

[32]  Uri Alon,et al.  Invariant Distribution of Promoter Activities in Escherichia coli , 2009, PLoS Comput. Biol..

[33]  Priscilla E. M. Purnick,et al.  The second wave of synthetic biology: from modules to systems , 2009, Nature Reviews Molecular Cell Biology.

[34]  T. Hwa,et al.  Growth-rate-dependent partitioning of RNA polymerases in bacteria , 2008, Proceedings of the National Academy of Sciences.

[35]  Terence Hwa,et al.  Combinatorial transcriptional control of the lactose operon of Escherichia coli , 2007, Proceedings of the National Academy of Sciences.

[36]  Christopher A. Voigt,et al.  Genetic parts to program bacteria. , 2006, Current opinion in biotechnology.

[37]  M. Schaechter From growth physiology to systems biology. , 2006, International microbiology : the official journal of the Spanish Society for Microbiology.

[38]  Oscar P. Kuipers,et al.  Phenotypic variation in bacteria: the role of feedback regulation , 2006, Nature Reviews Microbiology.

[39]  S. Leibler,et al.  Bacterial Persistence as a Phenotypic Switch , 2004, Science.

[40]  H. Bremer,et al.  Effect of the bacterial growth rate on replication control of plasmid pBR322 in Escherichia coli , 1986, Molecular and General Genetics MGG.

[41]  R. Gourse,et al.  Control of rRNA expression by small molecules is dynamic and nonredundant. , 2003, Molecular cell.

[42]  J. Ferrell Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. , 2002, Current opinion in cell biology.

[43]  B. Palsson,et al.  In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data , 2001, Nature Biotechnology.

[44]  Frederick C. Neidhardt,et al.  Bacterial Growth: Constant Obsession withdN/dt , 1999, Journal of bacteriology.

[45]  H. Bremer Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate , 1999 .

[46]  C. Kurland,et al.  Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction , 1995, Journal of bacteriology.

[47]  H. Buc,et al.  Transcriptional regulation by cAMP and its receptor protein. , 1993, Annual review of biochemistry.

[48]  F. Neidhardt,et al.  Physiology of the bacterial cell : a molecular approach , 1990 .

[49]  O. Maaløe,et al.  Regulation of the Protein-Synthesizing Machinery—Ribosomes, tRNA, Factors, and So On , 1979 .

[50]  F. Neidhardt,et al.  Physiological regulation of a decontrolled lac operon , 1977, Journal of bacteriology.

[51]  O. Maaløe An Analysis of Bacterial Growth , 1970 .

[52]  S. Cooper,et al.  Chromosome replication and the division cycle of Escherichia coli B/r. , 1968, Journal of molecular biology.

[53]  J. Monod From enzymatic adaptation to allosteric transitions , 1966, Science.

[54]  B. Magasanik Catabolite repression. , 1961, Cold Spring Harbor symposia on quantitative biology.

[55]  F. Neidhardt,et al.  Studies on the role of ribonucleic acid in the growth of bacteria. , 1960, Biochimica et biophysica acta.

[56]  O. Maaløe,et al.  Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. , 1958, Journal of general microbiology.

[57]  J. Monod The Growth of Bacterial Cultures , 1949 .