On the Hamilton-Waterloo Problem with cycle lengths of distinct parities
暂无分享,去创建一个
[1] Simona Bonvicini,et al. Octahedral, dicyclic and special linear solutions of some Hamilton-Waterloo problems , 2017, Ars Math. Contemp..
[2] Li Wang,et al. The Hamilton–Waterloo Problem for C3 ‐Factors and Cn ‐Factors , 2016, 1609.00453.
[3] P. Danziger,et al. On the Hamilton–Waterloo Problem with Odd Orders , 2015, 1510.07079.
[4] Jean-Claude Bermond,et al. Hamiltonian decomposition of Cayley graphs of degree 4 , 1989, J. Comb. Theory, Ser. B.
[5] Charles J. Colbourn,et al. The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.
[6] Jiuqiang Liu,et al. A generalization of the Oberwolfach problem andCt-factorizations of complete equipartite graphs , 2000 .
[7] Hongchuan Lei,et al. The Hamilton‐Waterloo problem for Hamilton cycles and triangle‐factors , 2012 .
[8] John Asplund,et al. On the Hamilton-Waterloo problem with triangle factors and C3x-factors , 2015, Australas. J Comb..
[9] Douglas R. Stinson,et al. The Oberwolfach problem and factors of uniform odd length cycles , 1989, J. Comb. Theory, Ser. A.
[10] Jiuqiang Liu,et al. The equipartite Oberwolfach problem with uniform tables , 2003, J. Comb. Theory, Ser. A.
[11] Tommaso Traetta,et al. A complete solution to the two-table Oberwolfach problems , 2013, J. Comb. Theory, Ser. A.
[12] Andrea C. Burgess,et al. On the Hamilton–Waterloo problem with odd cycle lengths , 2018 .
[13] Melissa S. Keranen,et al. The Hamilton-Waterloo Problem with 4-Cycles and a Single Factor of n-Cycles , 2013, Graphs Comb..
[14] Simona Bonvicini,et al. Octahedral, dicyclic and special linear solutions of some unsolved Hamilton-Waterloo problems , 2016 .
[15] Catharine A. Baker,et al. Extended skolem sequences , 1995 .
[16] Victor Scharaschkin,et al. Complete solutions to the Oberwolfach problem for an infinite set of orders , 2009, J. Comb. Theory, Ser. B.
[17] Erik E. Westlund. Hamilton decompositions of 6-regular Cayley graphs on even Abelian groups with involution-free connections sets , 2014, Discret. Math..
[18] Melissa S. Keranen,et al. A Generalization of the Hamilton–Waterloo Problem on Complete Equipartite Graphs , 2016, 1605.01781.
[19] Roland Häggkvist,et al. A Lemma on Cycle Decompositions , 1985 .
[20] Gloria Rinaldi,et al. Graph Products and New Solutions to Oberwolfach Problems , 2011, Electron. J. Comb..
[21] Darryn Bryant,et al. On the Hamilton‐Waterloo Problem for Bipartite 2‐Factors , 2013 .
[22] Dean G. Hoffman,et al. The existence of Ck-factorizations of K2n-F , 1991, Discret. Math..
[23] Sibel Ozkan,et al. The Hamilton-Waterloo Problem with C4 and Cm factors , 2015, Discret. Math..
[24] L. Wang,et al. A note on the Hamilton-Waterloo problem with C8-factors and Cm-factors , 2016, Discret. Math..
[25] Darryn E. Bryant,et al. On bipartite 2‐factorizations of kn − I and the Oberwolfach problem , 2011, J. Graph Theory.
[26] William Pettersson,et al. Bipartite 2-Factorizations of Complete Multipartite Graphs , 2015, J. Graph Theory.
[27] Brian Alspach,et al. Some observations on the oberwolfach problem , 1985, J. Graph Theory.
[28] Brett Stevens,et al. The Hamilton–Waterloo problem for cycle sizes 3 and 4 , 2009 .