On the Hamilton-Waterloo Problem with cycle lengths of distinct parities

Let $K_v^*$ denote the complete graph $K_v$ if $v$ is odd and $K_v-I$, the complete graph with the edges of a 1-factor removed, if $v$ is even. Given non-negative integers $v, M, N, \alpha, \beta$, the Hamilton-Waterloo problem asks for a $2$-factorization of $K^*_v$ into $\alpha$ $C_M$-factors and $\beta$ $C_N$-factors. Clearly, $M,N\geq 3$, $M\mid v$, $N\mid v$ and $\alpha+\beta = \lfloor\frac{v-1}{2}\rfloor$ are necessary conditions. Very little is known on the case where $M$ and $N$ have different parities. In this paper, we make some progress on this case by showing, among other things, that the above necessary conditions are sufficient whenever $M|N$, $v>6N>36M$, and $\beta\geq 3$.

[1]  Simona Bonvicini,et al.  Octahedral, dicyclic and special linear solutions of some Hamilton-Waterloo problems , 2017, Ars Math. Contemp..

[2]  Li Wang,et al.  The Hamilton–Waterloo Problem for C3 ‐Factors and Cn ‐Factors , 2016, 1609.00453.

[3]  P. Danziger,et al.  On the Hamilton–Waterloo Problem with Odd Orders , 2015, 1510.07079.

[4]  Jean-Claude Bermond,et al.  Hamiltonian decomposition of Cayley graphs of degree 4 , 1989, J. Comb. Theory, Ser. B.

[5]  Charles J. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[6]  Jiuqiang Liu,et al.  A generalization of the Oberwolfach problem andCt-factorizations of complete equipartite graphs , 2000 .

[7]  Hongchuan Lei,et al.  The Hamilton‐Waterloo problem for Hamilton cycles and triangle‐factors , 2012 .

[8]  John Asplund,et al.  On the Hamilton-Waterloo problem with triangle factors and C3x-factors , 2015, Australas. J Comb..

[9]  Douglas R. Stinson,et al.  The Oberwolfach problem and factors of uniform odd length cycles , 1989, J. Comb. Theory, Ser. A.

[10]  Jiuqiang Liu,et al.  The equipartite Oberwolfach problem with uniform tables , 2003, J. Comb. Theory, Ser. A.

[11]  Tommaso Traetta,et al.  A complete solution to the two-table Oberwolfach problems , 2013, J. Comb. Theory, Ser. A.

[12]  Andrea C. Burgess,et al.  On the Hamilton–Waterloo problem with odd cycle lengths , 2018 .

[13]  Melissa S. Keranen,et al.  The Hamilton-Waterloo Problem with 4-Cycles and a Single Factor of n-Cycles , 2013, Graphs Comb..

[14]  Simona Bonvicini,et al.  Octahedral, dicyclic and special linear solutions of some unsolved Hamilton-Waterloo problems , 2016 .

[15]  Catharine A. Baker,et al.  Extended skolem sequences , 1995 .

[16]  Victor Scharaschkin,et al.  Complete solutions to the Oberwolfach problem for an infinite set of orders , 2009, J. Comb. Theory, Ser. B.

[17]  Erik E. Westlund Hamilton decompositions of 6-regular Cayley graphs on even Abelian groups with involution-free connections sets , 2014, Discret. Math..

[18]  Melissa S. Keranen,et al.  A Generalization of the Hamilton–Waterloo Problem on Complete Equipartite Graphs , 2016, 1605.01781.

[19]  Roland Häggkvist,et al.  A Lemma on Cycle Decompositions , 1985 .

[20]  Gloria Rinaldi,et al.  Graph Products and New Solutions to Oberwolfach Problems , 2011, Electron. J. Comb..

[21]  Darryn Bryant,et al.  On the Hamilton‐Waterloo Problem for Bipartite 2‐Factors , 2013 .

[22]  Dean G. Hoffman,et al.  The existence of Ck-factorizations of K2n-F , 1991, Discret. Math..

[23]  Sibel Ozkan,et al.  The Hamilton-Waterloo Problem with C4 and Cm factors , 2015, Discret. Math..

[24]  L. Wang,et al.  A note on the Hamilton-Waterloo problem with C8-factors and Cm-factors , 2016, Discret. Math..

[25]  Darryn E. Bryant,et al.  On bipartite 2‐factorizations of kn − I and the Oberwolfach problem , 2011, J. Graph Theory.

[26]  William Pettersson,et al.  Bipartite 2-Factorizations of Complete Multipartite Graphs , 2015, J. Graph Theory.

[27]  Brian Alspach,et al.  Some observations on the oberwolfach problem , 1985, J. Graph Theory.

[28]  Brett Stevens,et al.  The Hamilton–Waterloo problem for cycle sizes 3 and 4 , 2009 .