Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity

[1]  M. Eddaoudi,et al.  A Fine-Tuned MOF for Gas and Vapor Separation: A Multipurpose Adsorbent for Acid Gas Removal, Dehydration, and BTX Sieving , 2017 .

[2]  Ayalew H. Assen,et al.  Valuing Metal–Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents , 2017, Advanced materials.

[3]  Ayalew H. Assen,et al.  Isoreticular rare earth fcu-MOFs for the selective removal of H2S from CO2 containing gases , 2017 .

[4]  Yanli Zhao,et al.  Selective H2S/CO2 Separation by Metal–Organic Frameworks Based on Chemical-Physical Adsorption , 2017 .

[5]  M. Eddaoudi,et al.  Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration , 2017, Science.

[6]  Diego A. Gómez-Gualdrón,et al.  Bottom-up construction of a superstructure in a porous uranium-organic crystal , 2017, Science.

[7]  M. O'keeffe,et al.  Applying the Power of Reticular Chemistry to Finding the Missing alb-MOF Platform Based on the (6,12)-Coordinated Edge-Transitive Net. , 2017, Journal of the American Chemical Society.

[8]  Amy J. Cairns,et al.  Metal–organic frameworks to satisfy gas upgrading demands: fine-tuning the soc-MOF platform for the operative removal of H2S , 2017 .

[9]  M. Eddaoudi,et al.  A Fine-Tuned Fluorinated MOF Addresses the Needs for Trace CO2 Removal and Air Capture Using Physisorption. , 2016, Journal of the American Chemical Society.

[10]  M. Eddaoudi,et al.  Low concentration CO2 capture using physical adsorbents: Are metal–organic frameworks becoming the new benchmark materials? , 2016 .

[11]  M. Eddaoudi,et al.  A metal-organic framework–based splitter for separating propylene from propane , 2016, Science.

[12]  François-Xavier Coudert,et al.  A pressure-amplifying framework material with negative gas adsorption transitions , 2016, Nature.

[13]  C. Serre,et al.  MIL-91(Ti), a small pore metal–organic framework which fulfils several criteria: an upscaled green synthesis, excellent water stability, high CO2 selectivity and fast CO2 transport , 2016 .

[14]  Ayalew H. Assen,et al.  Ultra-Tuning of the Rare-Earth fcu-MOF Aperture Size for Selective Molecular Exclusion of Branched Paraffins. , 2015, Angewandte Chemie.

[15]  M. Zaworotko,et al.  Direct Air Capture of CO2 by Physisorbent Materials. , 2015, Angewandte Chemie.

[16]  Amy J. Cairns,et al.  A facile solvent-free synthesis route for the assembly of a highly CO2 selective and H2S tolerant NiSIFSIX metal-organic framework. , 2015, Chemical communications.

[17]  D. Vos,et al.  Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity. , 2015, Chemical communications.

[18]  D. Farrusseng,et al.  Enantiopure Peptide-Functionalized Metal-Organic Frameworks. , 2015, Journal of the American Chemical Society.

[19]  Amy J. Cairns,et al.  Tunable Rare Earth fcu-MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction. , 2015, Journal of the American Chemical Society.

[20]  Jeffrey A. Reimer,et al.  Cooperative insertion of CO2 in diamine-appended metal-organic frameworks , 2015, Nature.

[21]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[22]  G. Qian,et al.  Methane storage in metal-organic frameworks. , 2014, Chemical Society reviews.

[23]  Mohamed Eddaoudi,et al.  A supermolecular building approach for the design and construction of metal-organic frameworks. , 2014, Chemical Society reviews.

[24]  Christian Serre,et al.  High valence 3p and transition metal based MOFs. , 2014, Chemical Society reviews.

[25]  S. Kaskel,et al.  Flexible metal-organic frameworks. , 2014, Chemical Society reviews.

[26]  Amy J. Cairns,et al.  Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal–organic frameworks , 2014, Nature Chemistry.

[27]  Amy J. Cairns,et al.  Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture , 2014, Nature Communications.

[28]  E. Narimani,et al.  Adsorptive Desulfurization of Liquefied Petroleum Gas for Carbonyl Sulfide Removal , 2014 .

[29]  H. Furukawa,et al.  High Methane Storage Capacity in Aluminum Metal–Organic Frameworks , 2014, Journal of the American Chemical Society.

[30]  C. Serre,et al.  A robust amino-functionalized titanium(iv) based MOF for improved separation of acid gases. , 2013, Chemical communications.

[31]  S. Kaskel,et al.  Highly hydrophobic isoreticular porous metal-organic frameworks for the capture of harmful volatile organic compounds. , 2013, Angewandte Chemie.

[32]  Shan Jiang,et al.  The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review , 2013, TheScientificWorldJournal.

[33]  Amy J. Cairns,et al.  Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake. , 2013, Journal of the American Chemical Society.

[34]  Stephen D. Burd,et al.  Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation , 2013, Nature.

[35]  Perla B. Balbuena,et al.  Porous materials with pre-designed single-molecule traps for CO2 selective adsorption , 2013, Nature Communications.

[36]  Louis J. Farrugia,et al.  WinGX and ORTEP for Windows: an update , 2012 .

[37]  Guy De Weireld,et al.  Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools , 2012 .

[38]  C. Tang,et al.  Metal-organic frameworks for the storage and delivery of biologically active hydrogen sulfide. , 2012, Dalton transactions.

[39]  Yue‐Biao Zhang,et al.  Metal azolate frameworks: from crystal engineering to functional materials. , 2012, Chemical reviews.

[40]  A. Sayari,et al.  Simultaneous Adsorption of H2S and CO2 on Triamine-Grafted Pore-Expanded Mesoporous MCM-41 Silica , 2011 .

[41]  A. Ghoufi,et al.  Molecular Insight into the Adsorption of H2S in the Flexible MIL-53(Cr) and Rigid MIL-47(V) MOFs: Infrared Spectroscopy Combined to Molecular Simulations , 2011 .

[42]  Lianbin Xu,et al.  Selective Absorption of H2S from a Gas Mixture with CO2 by Aqueous N-Methyldiethanolamine in a Rotating Packed Bed , 2010 .

[43]  Jun Liu,et al.  Gas-Induced Expansion and Contraction of a Fluorinated Metal−Organic Framework , 2010 .

[44]  C. Serre,et al.  Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature. , 2009, Journal of the American Chemical Society.

[45]  Mohamed A. Fahim,et al.  Petroleum and Gas Field Processing , 2003 .

[46]  Teresa J. Bandosz,et al.  A Role of Sodium Hydroxide in the Process of Hydrogen Sulfide Adsorption/Oxidation on Caustic-Impregnated Activated Carbons , 2002 .

[47]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[48]  M. Maricq,et al.  The effects of the catalytic converter and fuel sulfur level on motor vehicle particulate matter emissions: gasoline vehicles. , 2002, Environmental science & technology.

[49]  J. Tsai,et al.  Removal of H2S from Exhaust Gas by Use of Alkaline Activated Carbon , 2001 .

[50]  M. Zaworotko,et al.  From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids , 2001 .

[51]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[52]  Teresa J. Bandosz,et al.  Analysis of the Relationship between H2S Removal Capacity and Surface Properties of Unimpregnated Activated Carbons , 2000 .

[53]  W. Koros,et al.  Design considerations for measurement of gas sorption in polymers by pressure decay , 1976 .

[54]  E. Kelly,et al.  an update on , 2014 .

[55]  Yang Wei-we A Review on , 2008 .

[56]  Nils-Olof Nylund,et al.  PATHWAYS FOR NATURAL GAS INTO ADVANCED VEHICLES , 2002 .