Multiscale annealing for real-time unsupervised texture segmentation

We derive real-time global optimization algorithms for several clustering optimization methods used in unsupervised texture segmentation. Speed is achieved by exploiting the topological relation of features to design a multiscale optimization technique, while accuracy and global optimization properties are provided by a deterministic annealing method. Coarse grained costfunctions are derived for both central and sparse pairwise clustering, where the problem of coarsening sparse random graphs is solved by the concept of structured randomization. Annealing schedules and coarse-to-fine optimization are tightly coupled by a statistical convergence criterion derived from computational learning theory. The algorithms are benchmarked on Brodatz-like micro-texture mondrians. Results are presented for an autonomous robotics application.

[1]  Alexander Dekhtyar,et al.  Information Retrieval , 2018, Lecture Notes in Computer Science.

[2]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[3]  D. Pollard Strong Consistency of $K$-Means Clustering , 1981 .

[4]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[6]  Demetri Terzopoulos,et al.  Image Analysis Using Multigrid Relaxation Methods , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  H. Derin,et al.  Segmentation of textured images using Gibbs random fields , 1986 .

[8]  Peter Willett,et al.  Recent trends in hierarchic document clustering: A critical review , 1988, Inf. Process. Manag..

[9]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[10]  Goodman,et al.  Multigrid Monte Carlo method. Conceptual foundations. , 1989, Physical review. D, Particles and fields.

[11]  Carsten Peterson,et al.  A New Method for Mapping Optimization Problems Onto Neural Networks , 1989, Int. J. Neural Syst..

[12]  David E. van den Bout,et al.  Graph partitioning using annealed neural networks , 1990, International 1989 Joint Conference on Neural Networks.

[13]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[14]  Alan L. Yuille,et al.  Generalized Deformable Models, Statistical Physics, and Matching Problems , 1990, Neural Computation.

[15]  Donald Geman,et al.  Boundary Detection by Constrained Optimization , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Geoffrey C. Fox,et al.  A deterministic annealing approach to clustering , 1990, Pattern Recognit. Lett..

[18]  Charles A. Bouman,et al.  Multiple Resolution Segmentation of Textured Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Craig K. Rushforth,et al.  Image restoration using multigrid methods. , 1991, Applied optics.

[20]  Federico Girosi,et al.  Parallel and Deterministic Algorithms from MRFs: Surface Reconstruction , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[22]  Rama Chellappa,et al.  Unsupervised Texture Segmentation Using Markov Random Field Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Willard L. Miranker,et al.  Multiscale optimization in neural nets , 1991, IEEE Trans. Neural Networks.

[24]  Anil K. Jain,et al.  Texture classification and segmentation using multiresolution simultaneous autoregressive models , 1992, Pattern Recognit..

[25]  Geoffrey C. Fox,et al.  Vector quantization by deterministic annealing , 1992, IEEE Trans. Inf. Theory.

[26]  Tai Sing Lee,et al.  Texture Segmentation by Minimizing Vector-Valued Energy Functionals: The Coupled-Membrane Model , 1992, ECCV.

[27]  Wesley E. Snyder,et al.  Mean field annealing: a formalism for constructing GNC-like algorithms , 1992, IEEE Trans. Neural Networks.

[28]  Chee Sun Won,et al.  Unsupervised segmentation of noisy and textured images using Markov random fields , 1992, CVGIP Graph. Model. Image Process..

[29]  Rama Chellappa,et al.  Mean field annealing using compound Gauss-Markov random fields for edge detection and image estimation , 1993, IEEE Trans. Neural Networks.

[30]  Naftali Tishby,et al.  Distributional Clustering of English Words , 1993, ACL.

[31]  Maria Petrou,et al.  On multiresolution image restoration , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 2 - Conference B: Computer Vision & Image Processing. (Cat. No.94CH3440-5).

[32]  Tamás Linder,et al.  Rates of convergence in the source coding theorem, in empirical quantizer design, and in universal lossy source coding , 1994, IEEE Trans. Inf. Theory.

[33]  P. Pérez,et al.  Multiscale minimization of global energy functions in some visual recovery problems , 1994 .

[34]  G. Lugosi,et al.  Rates of convergence in the source coding theorem, in empirical quantizer design, and in universal lossy source coding , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[35]  Josef Kittler,et al.  Multiresolution motion segmentation , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[36]  Ezzatollah Salari,et al.  Texture segmentation using hierarchical wavelet decomposition , 1995, Pattern Recognit..

[37]  Glenn Healey,et al.  Markov Random Field Models for Unsupervised Segmentation of Textured Color Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Bidyut Baran Chaudhuri,et al.  Texture Segmentation Using Fractal Dimension , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Wolfram Burgard,et al.  The Mobile Robot Rhino , 1995, SNN Symposium on Neural Networks.

[40]  Josef Bigün,et al.  Hierarchical image segmentation by multi-dimensional clustering and orientation-adaptive boundary refinement , 1995, Pattern Recognit..

[41]  Jian Fan,et al.  Frame representations for texture segmentation , 1996, IEEE Trans. Image Process..

[42]  Steven Gold,et al.  A Graduated Assignment Algorithm for Graph Matching , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Patrick Pérez,et al.  Restriction of a Markov random field on a graph and multiresolution statistical image modeling , 1996, IEEE Trans. Inf. Theory.

[44]  Joachim M. Buhmann,et al.  Pairwise Data Clustering by Deterministic Annealing , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[46]  Christoph Stiller,et al.  Object-based estimation of dense motion fields , 1997, IEEE Trans. Image Process..

[47]  Joachim M. Buhmann,et al.  Deterministic Annealing for Unsupervised Texture Segmentation , 1997, EMMCVPR.

[48]  Joachim M. Buhmann,et al.  Unsupervised Learning for Robust Texture Segmentation , 1998, Theoretical Foundations of Computer Vision.

[49]  M. Abdel-Mottaleb,et al.  Performance Evaluation of Clustering Algorithms for Scalable Image Retrieval 1 , 1998 .

[50]  Joachim M. Buhmann,et al.  Unsupervised Texture Segmentation in a Deterministic Annealing Framework , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Thomas Hofmann,et al.  Statistical Models for Co-occurrence Data , 1998 .

[52]  Matti Pietikäinen,et al.  Unsupervised texture segmentation using feature distributions , 1997, Pattern Recognit..

[53]  Joachim M. Buhmann,et al.  A theory of proximity based clustering: structure detection by optimization , 2000, Pattern Recognit..

[54]  Joachim M. Buhmann,et al.  On spatial quantization of color images , 2000, IEEE Trans. Image Process..