Lattice animals and heaps of dimers
暂无分享,去创建一个
[1] G. Kreweras,et al. Sur les éventails de segments , 1970 .
[2] L. Lipshitz,et al. D-finite power series , 1989 .
[3] Mireille Bousquet-Mélou,et al. Stacking of segments and q -enumeration of convex directed polyominoes , 1992 .
[4] T. Prellberg,et al. Critical exponents from nonlinear functional equations for partially directed cluster models , 1995 .
[5] H. Temperley. Combinatorial Problems Suggested by the Statistical Mechanics of Domains and of Rubber-Like Molecules , 1956 .
[6] Mireille Bousquet-Mélou,et al. Empilements de segments et q-énumération de polyominos convexes dirigés , 1992, J. Comb. Theory, Ser. A.
[7] Jean-Pierre Nadal,et al. Exact results for 2D directed animals on a strip of finite width , 1983 .
[8] Philippe Flajolet,et al. Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..
[9] Philippe Flajolet,et al. A Calculus for the Random Generation of Labelled Combinatorial Structures , 1994, Theor. Comput. Sci..
[10] D. Klarner. Cell Growth Problems , 1967, Canadian Journal of Mathematics.
[11] S. Golomb. Polyominoes: Puzzles, Patterns, Problems, and Packings , 1994 .
[12] G. Viennot. Heaps of Pieces, I: Basic Definitions and Combinatorial Lemmas , 1989 .
[13] Mireille Bousquet-Mélou,et al. A method for the enumeration of various classes of column-convex polygons , 1996, Discret. Math..
[14] Mireille Bousquet-Mélou,et al. New enumerative results on two-dimensional directed animals , 1998, Discret. Math..
[15] I. Jensen,et al. LETTER TO THE EDITOR: Statistics of lattice animals (polyominoes) and polygons , 2000, cond-mat/0007238.
[16] Alberto Del Lungo,et al. Directed animals, forests and permutations , 1999, Discret. Math..
[17] H. Temperley,et al. On some new types of partitions associated with generalized ferrers graphs , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.
[18] J. Bétréma,et al. Animals and skew trees , 1993 .
[19] Doron Zeilberger,et al. Symbol-crunching with the transfer-matrix method in order to count skinny physical creatures. , 2000 .
[20] G. Torrie,et al. Restricted valence site animals on the triangular lattice , 1979 .
[21] D. Dhar. Equivalence of the two-dimensional directed-site animal problem to Baxter's hard-square lattice-gas model , 1982 .
[22] Ronald L. Rivest,et al. Asymptotic bounds for the number of convex n-ominoes , 1974, Discret. Math..
[23] C. E. Soteros,et al. Lattice Animals: Rigorous Results and Wild Guesses , 1990 .
[24] D. Gaunt,et al. Statistics of collapsing lattice animals , 1994 .
[25] Andrew R. Conway,et al. On two-dimensional percolation , 1995 .
[26] D. Klarner,et al. A Procedure for Improving the Upper Bound for the Number of n-Ominoes , 1972, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.
[27] D. Gaunt,et al. On the asymptotic number of lattice animals in bond and site percolation , 1978 .
[28] D Gouyou-Beauchamps,et al. Equivalence of the two-dimensional directed animal problem to a one-dimensional path problem , 1988 .
[29] Svjetlan Fereti. A q-enumeration ofdirected diagonally convex polyominoes , 2002 .
[30] Privman,et al. Exact generating function for fully directed compact lattice animals. , 1988, Physical review letters.
[31] Jean-Paul Allouche,et al. Sur la transcendance de la série formelle Π , 1990 .
[32] Mireille Bousquet-Mélou,et al. Codage des polyominos convexes et équations pour l'énumération suivant l'aire , 1994, Discret. Appl. Math..
[33] Svjetlan Feretic,et al. A q-enumeration of directed diagonally convex polyominoes , 2002, Discret. Math..
[34] Deepak Dhar. Exact Solution of a Directed-Site Animals-Enumeration Problem in three Dimensions. , 1983 .
[35] N. Madras,et al. Metropolis Monte Carlo simulation of lattice animals , 1997 .