Nuclear data sensitivity and uncertainty assessment of sodium voiding reactivity coefficients of an ASTRID-like Sodium Fast Reactor

The EU 7th Framework ESNII+ project was launched in 2013 with the strategic orientation of preparing ESNII for Horizon 2020. ESNII stands for the European Industrial Initiative on Nuclear Energy, created by the European Commission in 2010 to promote the development of a new generation of nuclear systems in order to provide a sustainable solution to cope with Europe’s growing energy needs while meeting the greenhouse gas emissions reduction target. The designs selected by the ESNII+ project are technological demonstrators of Generation-IV systems. The prototype for the sodium cooled fast reactor technology is ASTRID (standing for Advanced Sodium Technological Reactor for Industrial Demonstration), which building phase is foreseen to be initiated in 2019. The ASTRID core has a peculiar design which was created in order to tackle the main neutronic challenge of sodium cooled fast reactors: the inherent overall positive reactivity feedback in case of sodium boiling occurring in the core. Indeed, the core is claimed by its designers to have an overall negative reactivity feedback in this scenario. This feature was demonstrated for an ASTRID-like core within the ESNII+ framework studies performed by nine European institutions. In order to shift the paradigm towards best-estimate plus uncertainties, the nuclear data sensitivity analysis and uncertainty propagation on reactivity coefficients has to be carried out. The goal of this work is to assess the impact of nuclear data uncertainties on sodium boiling reactivity feedback coefficients in order to get a more complete picture of the actual safety margins of the ASTRID low void-core design. The nuclear data sensitivity analysis is performed in parallel using SCALE-TSUNAMI 3D and the newly developed GPT SERPENT 2 module. A comparison is carried out between both methodologies. Uncertainty on the sodium boiling reactivity feedbacks is then calculated using TSAR module of SCALE and the necessary safety margins conclusions are drawn.