Texture classification via conditional histograms

This paper presents a non-parametric discrimination strategy based on texture features characterised by one-dimensional conditional histograms. Our characterisation extends previous co-occurrence matrix encoding schemes by considering a mixture of colour and contextual information obtained from binary images. We compute joint distributions that define regions that represent pixels with similar intensity or colour properties. The main motivation is to obtain a compact characterisation suitable for applications requiring on-line training. Experimental results show that our approach can provide accurate discrimination. We use the classification to implement a segmentation application based on a hierarchical subdivision. The segmentation handles mixture problems at the boundary of regions by considering windows of different sizes. Examples show that the segmentation can accurately delineate image regions.

[1]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[2]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[4]  Matti Pietikäinen,et al.  Unsupervised texture segmentation using feature distributions , 1997, Pattern Recognit..

[5]  Mark S. Nixon,et al.  Combined Feature Sets for Texture Extraction , 1998 .

[6]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[7]  T. Kanade,et al.  Color information for region segmentation , 1980 .

[8]  Theodosios Pavlidis,et al.  Picture Segmentation by a Tree Traversal Algorithm , 1976, JACM.

[9]  Joachim M. Buhmann,et al.  Unsupervised Texture Segmentation in a Deterministic Annealing Framework , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Maria Petrou,et al.  Multidimensional Co-occurrence Matrices for Object Recognition and Matching , 1996, CVGIP Graph. Model. Image Process..

[11]  B. S. Manjunath,et al.  Edge flow: A framework of boundary detection and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  R. Browne,et al.  A comparative. , 1950, The British journal of ophthalmology.

[13]  Patrick C. Chen,et al.  Segmentation by texture using a co-occurrence matrix and a split-and-merge algorithm☆ , 1979 .

[14]  J. Dubois,et al.  Evaluation Of The Grey-level Co-occurrence Matrix Method For Land-cover Classification Using Spot Imagery , 1990 .

[15]  Harry Shum,et al.  Motion estimation with quadtree splines , 1995, Proceedings of IEEE International Conference on Computer Vision.

[16]  Erkki Oja,et al.  Texture discrimination with multidimensional distributions of signed gray-level differences , 2001, Pattern Recognit..

[17]  Xiaolin Wu Image coding by adaptive tree-structured segmentation , 1992, IEEE Trans. Inf. Theory.

[18]  Jens Michael Carstensen,et al.  Multiresolution Texture Analysis of four classes of Mice liver cells using different cell cluster re , 1995 .

[19]  Marijke F. Augusteijn,et al.  Performance evaluation of texture measures for ground cover identification in satellite images by means of a neural network classifier , 1995, IEEE Trans. Geosci. Remote. Sens..

[20]  Luciano Vieira Dutra,et al.  Some experiments with spatial feature extraction methods in multispectral classification , 1984 .

[21]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[22]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[23]  Robert J. Schalkoff,et al.  Pattern recognition - statistical, structural and neural approaches , 1991 .

[24]  Jungwoo Lee Joint optimization of block size and quantization for quadtree-based motion estimation , 1998, IEEE Trans. Image Process..

[25]  T. J. Stonham,et al.  N-tuple texture recognition and the zero crossing sketch , 1997 .

[26]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[27]  Anil K. Jain,et al.  Feature Selection: Evaluation, Application, and Small Sample Performance , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Richard C. Dubes,et al.  Performance evaluation for four classes of textural features , 1992, Pattern Recognit..

[29]  Michael Unser,et al.  Sum and Difference Histograms for Texture Classification , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Mark S. Nixon,et al.  Statistical geometrical features for texture classification , 1995, Pattern Recognit..

[31]  Joachim M. Buhmann,et al.  Empirical evaluation of dissimilarity measures for color and texture , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[32]  John R. Sullins Distributed Learning of Texture Classification , 1990, ECCV.

[33]  Li WangDong-Chen He,et al.  Texture classification using texture spectrum , 1990, Pattern Recognit..

[34]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .

[35]  Erkki Oja,et al.  Reduced Multidimensional Co-Occurrence Histograms in Texture Classification , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Alok Gupta,et al.  Color and texture fusion: application to aerial image segmentation and GIS updating , 2000, Image Vis. Comput..

[37]  Luc Van Gool,et al.  Texture analysis Anno 1983 , 1985, Comput. Vis. Graph. Image Process..

[38]  M. Unser Local linear transforms for texture measurements , 1986 .

[39]  Dmitry Chetverikov,et al.  GLDH based analysis of texture anisotropy and symmetry: an experimental study , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[40]  M. Nellis,et al.  Seasonal variation of heterogeneity in the tallgrass prairie : a quantitative measure using remote sensing , 1991 .

[41]  Matti Pietikäinen,et al.  Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2000, ECCV.

[42]  Torfinn Taxt,et al.  Local frequency features for texture classification , 1994, Pattern Recognit..