Recent Advances in Kinetic Optimizations of Cathode Materials for Rechargeable Magnesium Batteries

[1]  H. Pang,et al.  MIL‐96‐Al for Li–S Batteries: Shape or Size? , 2021, Advanced materials.

[2]  O. Borodin,et al.  Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics , 2021, Science.

[3]  Nuria Tapia‐Ruiz,et al.  Progress in high-voltage MgMn2O4 oxyspinel as a cathode material in Mg batteries , 2021, Current Opinion in Electrochemistry.

[4]  Junda Huang,et al.  Optimizing Electrode/Electrolyte Interphases and Li‐Ion Flux/Solvation for Lithium‐Metal Batteries with Qua‐Functional Heptafluorobutyric Anhydride , 2021, Angewandte Chemie.

[5]  Yan Yao,et al.  High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes , 2020, Nature Energy.

[6]  Yuezhan Feng,et al.  Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries. , 2020, Science bulletin.

[7]  R. Holze,et al.  Latest Advances in High-Voltage and High-Energy-Density Aqueous Rechargeable Batteries , 2020, Electrochemical Energy Reviews.

[8]  J. Cabana,et al.  High Capacity for Mg2+ Deintercalation in Spinel Vanadium Oxide Nanocrystals , 2020 .

[9]  J. Cabana,et al.  High Voltage Mg-Ion Battery Cathode via a Solid Solution Cr–Mn Spinel Oxide , 2020 .

[10]  Tianyi Kou,et al.  Phase engineering in lead–bismuth system for advanced magnesium ion batteries , 2020 .

[11]  Chengliang Wang,et al.  Redox polymers for rechargeable metal-ion batteries , 2020 .

[12]  Ping Liu,et al.  Rechargeable Mg metal batteries enabled by a protection layer formed in vivo , 2020 .

[13]  Bumjun Park,et al.  Review—Polymer Electrolytes for Magnesium Batteries: Forging Away from Analogs of Lithium Polymer Electrolytes and Towards the Rechargeable Magnesium Metal Polymer Battery , 2020 .

[14]  Yuan-Fang Zhang,et al.  Constructing stress-release layer on Fe7Se8-based composite for highly stable sodium-storage , 2020 .

[15]  John T. Vaughey,et al.  Probing Electrochemical Mg-Ion Activity in MgCr2–xVxO4 Spinel Oxides , 2020 .

[16]  Lin Guo,et al.  A Selective Reduction Approach to Construct Robust Cu1.81S Truss Structures for High-Performance Sodium Storage , 2020 .

[17]  Y. Orikasa,et al.  Noncrystalline Nanocomposites as a Remedy for the Low Diffusivity of Multivalent Ions in Battery Cathodes , 2020 .

[18]  Klemen Pirnat,et al.  Quinone Based Materials as Renewable High Energy Density Cathode Materials for Rechargeable Magnesium Batteries , 2020, Materials.

[19]  Jinbao Zhao,et al.  NaV6O15: A promising cathode material for insertion/extraction of Mg2+ with excellent cycling performance , 2020, Nano Research.

[20]  J. Cabana,et al.  Probing Mg Migration in Spinel Oxides , 2019, Chemistry of Materials.

[21]  Xiulin Fan,et al.  A Pyrazine-Based Polymer for Fast-Charge Batteries. , 2019, Angewandte Chemie.

[22]  H. Yang,et al.  Construction of complex NiS multi-shelled hollow structures with enhanced sodium storage , 2019 .

[23]  Yu-Xia Xu,et al.  Porous pyrrhotite Fe7S8 nanowire/SiOx/nitrogen-doped carbon matrix for high-performance Li-ion-battery anodes. , 2019, Journal of colloid and interface science.

[24]  Weishan Li,et al.  Kinetic surface control for improved magnesium-electrolyte interfaces for magnesium ion batteries , 2019, Energy Storage Materials.

[25]  V. Shenoy,et al.  High‐Rate and Long Cycle‐Life Alloy‐Type Magnesium‐Ion Battery Anode Enabled Through (De)magnesiation‐Induced Near‐Room‐Temperature Solid–Liquid Phase Transformation , 2019, Advanced Energy Materials.

[26]  Yong Lu,et al.  Recent Progress on Layered Cathode Materials for Nonaqueous Rechargeable Magnesium Batteries. , 2019, Small.

[27]  H. Yang,et al.  Boosting Sodium Storage of Fe1−xS/MoS2 Composite via Heterointerface Engineering , 2019, Nano-Micro Letters.

[28]  Yan Yu,et al.  The Promise and Challenge of Phosphorus‐Based Composites as Anode Materials for Potassium‐Ion Batteries , 2019, Advanced materials.

[29]  K. Yin,et al.  Composition- and size-modulated porous bismuth-tin biphase alloys as anodes for advanced magnesium ion batteries. , 2019, Nanoscale.

[30]  L. Mai,et al.  Interchain-expanded vanadium tetrasulfide with fast kinetics for rechargeable magnesium batteries. , 2019, ACS applied materials & interfaces.

[31]  H. Yang,et al.  Promoting Highly Reversible Sodium Storage of Iron Sulfide Hollow Polyhedrons via Cobalt Incorporation and Graphene Wrapping , 2019, Advanced Energy Materials.

[32]  J. Ryu,et al.  Amorphous V2O5 Positive Electrode Materials by Precipitation Method in Magnesium Rechargeable Batteries , 2019, Electronic Materials Letters.

[33]  Yongbing Tang,et al.  Room‐Temperature Rechargeable Ca‐Ion Based Hybrid Batteries with High Rate Capability and Long‐Term Cycling Life , 2019, Advanced Energy Materials.

[34]  Yu‐Guo Guo,et al.  MgSc2 Se4 -A Magnesium Solid Ionic Conductor for All-Solid-State Mg Batteries? , 2019, ChemSusChem.

[35]  Jun Lu,et al.  Vanadium Oxide Pillared by Interlayer Mg2+ Ions and Water as Ultralong-Life Cathodes for Magnesium-Ion Batteries , 2019, Chem.

[36]  Zheng Xing,et al.  Advanced Carbon‐Based Anodes for Potassium‐Ion Batteries , 2019, Advanced Energy Materials.

[37]  W. Xia,et al.  An all manganese-based oxide nanocrystal cathode and anode for high performance lithium-ion full cells , 2019, Nanoscale advances.

[38]  Naiqing Zhang,et al.  PVP incorporated MoS2 as a Mg ion host with enhanced capacity and durability , 2019, Journal of Materials Chemistry A.

[39]  Xuhui Yao,et al.  Rational Design of Preintercalated Electrodes for Rechargeable Batteries , 2019, ACS Energy Letters.

[40]  Chang E. Ren,et al.  Magnesium-Ion Storage Capability of MXenes , 2019, ACS Applied Energy Materials.

[41]  S. Mukherjee,et al.  Two-Dimensional Anode Materials for Non-lithium Metal-Ion Batteries , 2019, ACS Applied Energy Materials.

[42]  S. Hou,et al.  A critical review of cathodes for rechargeable Mg batteries. , 2018, Chemical Society reviews.

[43]  Mohadese Rastgoo-Deylami,et al.  H2V3O8 as a High Energy Cathode Material for Nonaqueous Magnesium-Ion Batteries , 2018, Chemistry of Materials.

[44]  J. Choi,et al.  Intercalated Water and Organic Molecules for Electrode Materials of Rechargeable Batteries , 2018, Advanced materials.

[45]  Yang-Kook Sun,et al.  Recent Progress in Rechargeable Potassium Batteries , 2018, Advanced Functional Materials.

[46]  Kai Zhu,et al.  Superior high rate capability of MgMn2O4/rGO nanocomposites as cathode materials for aqueous rechargeable magnesium ion batteries. , 2018, Chemical communications.

[47]  M. Kovalenko,et al.  Colloidal Bismuth Nanocrystals as a Model Anode Material for Rechargeable Mg-Ion Batteries: Atomistic and Mesoscale Insights. , 2018, ACS nano.

[48]  J. Grdadolnik,et al.  Electrochemical performance and redox mechanism of naphthalene-hydrazine diimide polymer as a cathode in magnesium battery , 2018, Journal of Power Sources.

[49]  F. Du,et al.  From Crystalline to Amorphous: An Effective Avenue to Engineer High‐Performance Electrode Materials for Sodium‐Ion Batteries , 2018, Advanced Materials Interfaces.

[50]  C. Cao,et al.  Toward Alleviating Voltage Decay by Sodium Substitution in Lithium-Rich Manganese-Based Oxide Cathodes , 2018, ACS Applied Energy Materials.

[51]  Zhongxue Chen,et al.  Copper sulfide nanoparticles as high-performance cathode materials for magnesium secondary batteries. , 2018, Nanoscale.

[52]  T. Chen,et al.  Highly Branched VS4 Nanodendrites with 1D Atomic‐Chain Structure as a Promising Cathode Material for Long‐Cycling Magnesium Batteries , 2018, Advanced materials.

[53]  Yong‐Mook Kang,et al.  Interlayer‐Spacing‐Regulated VOPO4 Nanosheets with Fast Kinetics for High‐Capacity and Durable Rechargeable Magnesium Batteries , 2018, Advanced materials.

[54]  Huang Zhang,et al.  Beyond Insertion for Na‐Ion Batteries: Nanostructured Alloying and Conversion Anode Materials , 2018 .

[55]  Shuhong Yu,et al.  High Voltage Magnesium-ion Battery Enabled by Nanocluster Mg3Bi2 Alloy Anode in Noncorrosive Electrolyte. , 2018, ACS nano.

[56]  M. E. A. Dompablo,et al.  Comparative Investigation of MgMnSiO4 and Olivine-Type MgMnSiS4 as Cathode Materials for Mg Batteries , 2018 .

[57]  Tao Gao,et al.  An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes , 2018, Nature Chemistry.

[58]  M. Winter,et al.  Performance and cost of materials for lithium-based rechargeable automotive batteries , 2018 .

[59]  S. Shi,et al.  Opening Magnesium Storage Capability of Two-Dimensional MXene by Intercalation of Cationic Surfactant. , 2018, ACS nano.

[60]  C. Cao,et al.  Scalable 2D Mesoporous Silicon Nanosheets for High-Performance Lithium-Ion Battery Anode. , 2018, Small.

[61]  Zhen Zhou,et al.  Micro/Nanostructured Materials for Sodium Ion Batteries and Capacitors. , 2018, Small.

[62]  L. Yuping,et al.  Nanostructured-VO2(B): A high-capacity magnesium-ion cathode and its electrochemical reaction mechanism , 2018 .

[63]  Kang Xu,et al.  Reversible S0 /MgSx Redox Chemistry in a MgTFSI2 /MgCl2 /DME Electrolyte for Rechargeable Mg/S Batteries. , 2017, Angewandte Chemie.

[64]  J. Muldoon,et al.  Fervent Hype behind Magnesium Batteries: An Open Call to Synthetic Chemists-Electrolytes and Cathodes Needed. , 2017, Angewandte Chemie.

[65]  F. Du,et al.  Ultrathin TiO2-B nanowires as an anode material for Mg-ion batteries based on a surface Mg storage mechanism. , 2017, Nanoscale.

[66]  C. Li,et al.  Li3VO4: an insertion anode material for magnesium ion batteries with high specific capacity , 2017 .

[67]  Jun Lu,et al.  Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries , 2017, Nature Communications.

[68]  L. Mai,et al.  H2V3O8 Nanowires as High-Capacity Cathode Materials for Magnesium-Based Battery. , 2017, ACS applied materials & interfaces.

[69]  A. Missyul,et al.  TiS3 Magnesium Battery Material: Atomic-Scale Study of Maximum Capacity and Structural Behavior , 2017 .

[70]  Laura C. Merrill,et al.  Electrochemical Properties and Speciation in Mg(HMDS)2-Based Electrolytes for Magnesium Batteries as a Function of Ethereal Solvent Type and Temperature. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[71]  Y. Sohn,et al.  A freestanding NiSx porous film as a binder-free electrode for Mg-ion batteries. , 2017, Chemical communications.

[72]  S. Banerjee,et al.  Evaluation of Multivalent Cation Insertion in Single- and Double-Layered Polymorphs of V2O5. , 2017, ACS applied materials & interfaces.

[73]  M. Islam,et al.  MgFeSiO4 as a potential cathode material for magnesium batteries: ion diffusion rates and voltage trends , 2017 .

[74]  Lixin Qiao,et al.  Novel Design Concepts of Efficient Mg‐Ion Electrolytes toward High‐Performance Magnesium–Selenium and Magnesium–Sulfur Batteries , 2017 .

[75]  Taeeun Yim,et al.  Magnesium Anode Pretreatment Using a Titanium Complex for Magnesium Battery , 2017 .

[76]  C. Ling,et al.  Thermodynamic Origin of Irreversible Magnesium Trapping in Chevrel Phase Mo6S8: Importance of Magnesium and Vacancy Ordering , 2017 .

[77]  Christopher P. Rhodes,et al.  Controlling interlayer interactions in vanadium pentoxide-poly(ethylene oxide) nanocomposites for enhanced magnesium-ion charge transport and storage , 2017 .

[78]  Gerbrand Ceder,et al.  Thermodynamics of Phase Selection in MnO2 Framework Structures through Alkali Intercalation and Hydration. , 2017, Journal of the American Chemical Society.

[79]  K. Vezzù,et al.  Interplay Between Structure and Conductivity in 1-Ethyl-3-methylimidazolium tetrafluoroborate/(δ-MgCl2)f Electrolytes for Magnesium Batteries , 2016 .

[80]  Jun Chen,et al.  Layered Na2Ti3O7/MgNaTi3O7/Mg0.5NaTi3O7 Nanoribbons as High-Performance Anode of Rechargeable Mg-Ion Batteries , 2016 .

[81]  L. Nazar,et al.  Screening for positive electrodes for magnesium batteries: a protocol for studies at elevated temperatures. , 2016, Chemical communications.

[82]  Anubhav Jain,et al.  Evaluation of sulfur spinel compounds for multivalent battery cathode applications , 2016 .

[83]  S. Manzhos,et al.  A first-principles comparative study of lithium, sodium, and magnesium storage in pure and gallium-doped germanium: Competition between interstitial and substitutional sites. , 2016, The Journal of chemical physics.

[84]  Jared T. Incorvati,et al.  Building a Fast Lane for Mg Diffusion in α-MoO3 by Fluorine Doping , 2016 .

[85]  B. Bartlett,et al.  Fluorinated Alkoxide-Based Magnesium-Ion Battery Electrolytes that Demonstrate Li-Ion-Battery-Like High Anodic Stability and Solution Conductivity. , 2016, ACS applied materials & interfaces.

[86]  K. Taniguchi,et al.  Copper Selenide as a New Cathode Material based on Displacement Reaction for Rechargeable Magnesium Batteries , 2016 .

[87]  Albert L. Lipson,et al.  Is alpha-V 2 O 5 a cathode material for Mg insertion batteries? , 2016 .

[88]  P. D. Tran,et al.  Disulfide-Bridged (Mo3S11) Cluster Polymer: Molecular Dynamics and Application as Electrode Material for a Rechargeable Magnesium Battery. , 2016, Nano letters.

[89]  Linda F. Nazar,et al.  A high capacity thiospinel cathode for Mg batteries , 2016 .

[90]  S. Paddison,et al.  Toward a Magnesium‐Iodine Battery , 2016 .

[91]  L. Nazar,et al.  Layered TiS2 Positive Electrode for Mg Batteries , 2016 .

[92]  T. Masese,et al.  Anti-site mixing governs the electrochemical performances of olivine-type MgMnSiO4 cathodes for rechargeable magnesium batteries. , 2016, Physical chemistry chemical physics : PCCP.

[93]  C. Cao,et al.  Mesoporous Spinel LiMn 2 O 4 Cathode Material by a Soft-templating Route , 2016 .

[94]  Sang Bok Lee,et al.  Mapping the Challenges of Magnesium Battery. , 2016, The journal of physical chemistry letters.

[95]  W. Richards,et al.  Role of Structural H2O in Intercalation Electrodes: The Case of Mg in Nanocrystalline Xerogel-V2O5. , 2016, Nano letters.

[96]  Jared T. Incorvati,et al.  Reversible Magnesium Intercalation into a Layered Oxyfluoride Cathode , 2016 .

[97]  Kristin A. Persson,et al.  Elucidating the structure of the magnesium aluminum chloride complex electrolyte for magnesium-ion batteries , 2015, 1511.02504.

[98]  Yan Yao,et al.  Graphene decorated vanadium oxide nanowire aerogel for long-cycle-life magnesium battery cathodes , 2015 .

[99]  Yuyan Shao,et al.  Interface Promoted Reversible Mg Insertion in Nanostructured Tin–Antimony Alloys , 2015, Advanced materials.

[100]  L. Stievano,et al.  First investigation of indium-based electrode in Mg battery , 2015 .

[101]  W. Ding,et al.  Flower-like CoS with nanostructures as a new cathode-active material for rechargeable magnesium batteries , 2015 .

[102]  Yi-sheng Liu,et al.  Amorphous V2O5-P2O5 as high-voltage cathodes for magnesium batteries. , 2015, Chemical communications.

[103]  S. Greenbaum,et al.  A Key concept in Magnesium Secondary Battery Electrolytes. , 2015, ChemSusChem.

[104]  Limin Wang,et al.  Solvothermal synthesis of GO/V2O5 composites as a cathode material for rechargeable magnesium batteries , 2015 .

[105]  Florian Thöle,et al.  Re-examining the Chevrel phase Mo6S8 cathode for Mg intercalation from an electronic structure perspective. , 2015, Physical chemistry chemical physics : PCCP.

[106]  D. Prendergast,et al.  Mg Desolvation and Intercalation Mechanism at the Mo6S8 Chevrel Phase Surface , 2015 .

[107]  C. Ling,et al.  How General is the Conversion Reaction in Mg Battery Cathode: A Case Study of the Magnesiation of α-MnO2 , 2015 .

[108]  Christopher S. Johnson,et al.  Nanostructured Layered Cathode for Rechargeable Mg-Ion Batteries. , 2015, ACS nano.

[109]  Z. Fu,et al.  Hybrid system for rechargeable magnesium battery with high energy density , 2015, Scientific Reports.

[110]  Seok-Gwang Doo,et al.  The High Performance of Crystal Water Containing Manganese Birnessite Cathodes for Magnesium Batteries. , 2015, Nano letters.

[111]  Ya‐Xia Yin,et al.  Improving the electrochemical performance of the li4 ti5 o12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. , 2015, Angewandte Chemie.

[112]  A. Van der Ven,et al.  Mg intercalation in layered and spinel host crystal structures for Mg batteries. , 2015, Inorganic chemistry.

[113]  Min‐Sik Park,et al.  Role of Cu in Mo₆S₈ and Cu mixture cathodes for magnesium ion batteries. , 2015, ACS applied materials & interfaces.

[114]  Lei Cheng,et al.  The unexpected discovery of the Mg(HMDS)2/MgCl2 complex as a magnesium electrolyte for rechargeable magnesium batteries , 2015 .

[115]  Yan Yao,et al.  Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. , 2015, Nano letters.

[116]  Caetano R. Miranda,et al.  First-Principles Investigation of Transition Metal Dichalcogenide Nanotubes for Li and Mg Ion Battery Applications , 2015 .

[117]  Ruigang Zhang,et al.  A conceptual magnesium battery with ultrahigh rate capability. , 2015, Chemical communications.

[118]  Rahul Malik,et al.  Spinel compounds as multivalent battery cathodes: A systematic evaluation based on ab initio calculations , 2014 .

[119]  Ki Jae Kim,et al.  Copper incorporated CuxMo6S8 (x ≥ 1) Chevrel-phase cathode materials synthesized by chemical intercalation process for rechargeable magnesium batteries , 2014 .

[120]  M Stanley Whittingham,et al.  Ultimate limits to intercalation reactions for lithium batteries. , 2014, Chemical reviews.

[121]  J. Muldoon,et al.  Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. , 2014, Chemical reviews.

[122]  Y. L. Zhou,et al.  Comparison of tetragonal and cubic tin as anode for Mg ion batteries. , 2014, ACS applied materials & interfaces.

[123]  M. Miyayama,et al.  Manganese oxide octahedral molecular sieves as insertion electrodes for rechargeable Mg batteries , 2013 .

[124]  Yi Cui,et al.  Highly reversible open framework nanoscale electrodes for divalent ion batteries. , 2013, Nano letters.

[125]  H. Kurihara,et al.  Vanadium Pentoxide-Based Composite Synthesized Using Microwave Water Plasma for Cathode Material in Rechargeable Magnesium Batteries , 2013, Materials.

[126]  Yongchang Liu,et al.  Synthesis of rGO-supported layered MoS2 for high-performance rechargeable Mg batteries. , 2013, Nanoscale.

[127]  D. Aurbach,et al.  Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[128]  Yongchang Liu,et al.  Sandwich-structured graphene-like MoS2/C microspheres for rechargeable Mg batteries , 2013 .

[129]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[130]  Hiroshi Senoh,et al.  Mg2+ Storage in Organic Positive-electrode Active Material Based on 2,5-Dimethoxy-1,4-benzoquinone , 2012 .

[131]  Fan Zhang,et al.  Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries , 2012 .

[132]  Jiulin Wang,et al.  Magnesium cobalt silicate materials for reversible magnesium ion storage , 2012 .

[133]  Timothy S. Arthur,et al.  Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries , 2012 .

[134]  Feiyu Kang,et al.  Energetic zinc ion chemistry: the rechargeable zinc ion battery. , 2012, Angewandte Chemie.

[135]  Jun Chen,et al.  First-Principles Study of Zigzag MoS2 Nanoribbon As a Promising Cathode Material for Rechargeable Mg Batteries , 2012 .

[136]  Allen G. Oliver,et al.  Structure and compatibility of a magnesium electrolyte with a sulphur cathode , 2011, Nature communications.

[137]  Hua Ma,et al.  Rechargeable Mg Batteries with Graphene‐like MoS2 Cathode and Ultrasmall Mg Nanoparticle Anode , 2011, Advanced materials.

[138]  M. Mitrić,et al.  Electrochemical Behaviour of V_{2}O_{5} Xerogel and V_{2}O_{5} Xerogel/C Composite in an Aqueous LiNO_{3} and Mg(NO_{3})_{2} Solutions , 2010 .

[139]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[140]  A. Mitelman,et al.  Progress in Rechargeable Magnesium Battery Technology , 2007 .

[141]  M. Dubois,et al.  Magnesium batteries: Towards a first use of graphite fluorides , 2007 .

[142]  D. Aurbach,et al.  New cathode materials for rechargeable Mg batteries: fast Mg ion transport and reversible copper extrusion in CuyMo6S8 compounds. , 2007, Chemical communications.

[143]  Zaiping Guo,et al.  A new class of cathode materials for rechargeable magnesium batteries: Organosulfur compounds based on sulfur–sulfur bonds , 2007 .

[144]  D. Aurbach,et al.  Phase Diagram of Mg Insertion into Chevrel Phases, MgxMo6T8 (T = S, Se). 1. Crystal Structure of the Sulfides , 2006 .

[145]  D. Aurbach,et al.  Phase Diagram of Mg Insertion into Chevrel Phases, MgxMo6T8(T = S, Se). 2. The Crystal Structure of Triclinic MgMo6Se8 , 2006 .

[146]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[147]  Lifang Jiao,et al.  Synthesis of Cu0.1-doped vanadium oxide nanotubes and their application as cathode materials for rechargeable magnesium batteries , 2006 .

[148]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[149]  G. B. Reddy,et al.  Infrared spectroscopic studies on Mg intercalated crystalline MoO3 thin films , 2004 .

[150]  Jun Chen,et al.  TiS2 nanotubes as the cathode materials of Mg-ion batteries. , 2004, Chemical communications.

[151]  Yadong Li,et al.  MoS2 Nanostructures: Synthesis and Electrochemical Mg2+ Intercalation , 2004 .

[152]  D. Aurbach,et al.  Electrolyte Solutions for Rechargeable Magnesium Batteries Based on Organomagnesium Chloroaluminate Complexes , 2002 .

[153]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[154]  Lixin Qiao,et al.  Perspective of polymer-based solid-state Li-S batteries , 2022, Energy Materials.

[155]  Lili Liu,et al.  Critical advances in re-engineering the cathode-electrolyte interface in alkali metal-oxygen batteries , 2021, Energy Materials.

[156]  B. Bartlett,et al.  Influence of steric bulk on the oxidative stability of phenolate-based magnesium-ion battery electrolytes , 2016 .

[157]  H. Takagi,et al.  Rechargeable Mg battery cathode TiS3 with d–p orbital hybridized electronic structures , 2015 .