A highly porous metal-organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake.

A highly porous metal-organic framework Cu(2)(BBCDC) (BBCDC = 9,9'-([1,1'-b[combining low line]iphenyl]-4,4'-diyl)b[combining low line]is(9H-c[combining low line]arbazole-3,6-d[combining low line]ic[combining low line]arboxylate) (DUT-49) with a specific surface area of 5476 m(2) g(-1), a pore volume of 2.91 cm(3) g(-1), a H(2) excess uptake of 80 mg g(-1) (77 K, 50 bar), a CO(2) excess uptake of 2.01 g g(-1) (298 K, 50 bar) and an exceptionally high excess methane storage capacity of 308 mg g(-1) (298 K, 110 bar) was obtained using an extended tetratopic linker.

[1]  S. Kaskel,et al.  Adsorptive capturing and storing greenhouse gases such as sulfur hexafluoride and carbon tetrafluoride using metal–organic frameworks , 2012 .

[2]  Freek Kapteijn,et al.  Tuning the catalytic performance of metal–organic frameworks in fine chemistry by active site engineering , 2012 .

[3]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[4]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[5]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[6]  Joanne I. Yeh,et al.  Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework , 2012, Nature Communications.

[7]  M. Hirscher,et al.  Route to a family of robust, non-interpenetrated metal-organic frameworks with pto-like topology. , 2011, Chemistry.

[8]  Sihai Yang,et al.  A mesoporous metal-organic framework constructed from a nanosized C3-symmetric linker and [Cu24(isophthalate)24] cuboctahedra. , 2011, Chemical communications.

[9]  S. Kaskel,et al.  Capture of nerve agents and mustard gas analogues by hydrophobic robust MOF-5 type metal-organic frameworks. , 2011, Journal of the American Chemical Society.

[10]  N. Kato,et al.  MicroRNA122 is a key regulator of α-fetoprotein expression and influences the aggressiveness of hepatocellular carcinoma. , 2011, Nature communications.

[11]  F. Glorius,et al.  A family of chiral metal-organic frameworks. , 2011, Chemistry.

[12]  R. Krishna,et al.  Methane storage mechanism in the metal-organic framework Cu3(btc)2: An in situ neutron diffraction study , 2010 .

[13]  U. Mueller,et al.  A highly porous metal-organic framework with open nickel sites. , 2010, Angewandte Chemie.

[14]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[15]  Wenbin Lin,et al.  A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis. , 2010, Nature chemistry.

[16]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[17]  Dan Zhao,et al.  An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. , 2010, Angewandte Chemie.

[18]  Alexander J. Blake,et al.  Metal-organic polyhedral frameworks: high h(2) adsorption capacities and neutron powder diffraction studies. , 2010, Journal of the American Chemical Society.

[19]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[20]  M. Zaworotko,et al.  Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. , 2009, Chemical Society reviews.

[21]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[22]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[23]  D. J. Timmons,et al.  Interconversion between molecular polyhedra and metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[24]  A. Matzger,et al.  A porous coordination copolymer with over 5000 m2/g BET surface area. , 2009, Journal of the American Chemical Society.

[25]  Yong Yan,et al.  Exceptionally high H2 storage by a metal-organic polyhedral framework. , 2009, Chemical communications.

[26]  Alexander J. Blake,et al.  High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. , 2009, Journal of the American Chemical Society.

[27]  H. Fjellvåg,et al.  Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal-organic framework Ni2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. , 2008, Chemical communications.

[28]  J. Long,et al.  Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. , 2008, Angewandte Chemie.

[29]  Mohamed Eddaoudi,et al.  Supermolecular building blocks (SBBs) and crystal design: 12-connected open frameworks based on a molecular cubohemioctahedron. , 2008, Journal of the American Chemical Society.

[30]  S. Bhatia,et al.  Optimum conditions for adsorptive storage. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[31]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[32]  M. Eddaoudi,et al.  Porous metal-organic polyhedra: 25 A cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. , 2001, Journal of the American Chemical Society.

[33]  Sridhar Komarneni,et al.  Porous Adsorbents for Vehicular Natural Gas Storage: A Review , 1998 .