GPS trajectory data segmentation based on probabilistic logic

Abstract With the rapid development of internet economy, transparent logistics is stepping into a prosperity period with massive transportation data generated and collected every day. In this paper, we focus on the segmentation of GPS trajectory data generated in logistics transportation to analyze the vehicle behaviors and extract business affair information according to the vehicle behavior characteristics, which is challenging due to the complexity of trajectory data and unavailability of road information. We extract the stopping points from the trajectory data sequence based on the duration of nonmovement, and construct business time window and electronic fence by analyzing the driving habits of vehicles. Furthermore, we propose a probabilistic logic based data segmentation method (PLDSM) which not only helps finding all the business points but also assists in inferring the business affair categories. An efficient numerical algorithm integrating duality theory and Newton's method is proposed to obtain the optimal solution. Finally, a practical example is presented to validate the effectiveness of PLDSM. The results greatly enrich the data segmentation technique and promote the practicability of probabilistic logic.

[1]  Vania Bogorny,et al.  A clustering-based approach for discovering interesting places in trajectories , 2008, SAC '08.

[2]  Stefano Spaccapietra,et al.  Semantic trajectories: Mobility data computation and annotation , 2013, TIST.

[3]  Jianmei Wang,et al.  T-DBSCAN: A Spatiotemporal Density Clustering for GPS Trajectory Segmentation , 2014, Int. J. Online Eng..

[4]  Hao Wang,et al.  Detecting Transportation Modes Using Deep Neural Network , 2017, IEICE Trans. Inf. Syst..

[5]  Maike Buchin,et al.  Segmenting trajectories: A framework and algorithms using spatiotemporal criteria , 2011, J. Spatial Inf. Sci..

[6]  Kevin Heaslip,et al.  Inferring transportation modes from GPS trajectories using a convolutional neural network , 2018, ArXiv.

[7]  A. Kölzsch,et al.  Segmenting Trajectories by Movement States , 2013 .

[8]  H. Müller,et al.  Statistical methods for DNA sequence segmentation , 1998 .

[9]  Heng Tao Shen,et al.  Convoy Queries in Spatio-Temporal Databases , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[10]  Richard B. Scherl,et al.  A probabilistic logic based on the acceptability of gambles , 2007, Int. J. Approx. Reason..

[11]  Patrick Laube,et al.  Analyzing Relative Motion within Groups of Trackable Moving Point Objects , 2002, GIScience.

[12]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.

[13]  Cyrus Shahabi,et al.  Robust Time-Referenced Segmentation of Moving Object Trajectories , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[14]  Maria Luisa Damiani,et al.  Segmentation techniques for the summarization of individual mobility data , 2017, Wiley Interdiscip. Rev. Data Min. Knowl. Discov..

[15]  Cem Ersoy,et al.  Online Human Activity Recognition on Smart Phones , 2012 .

[16]  Martine De Cock,et al.  Modelling incomplete information in Boolean games using possibilistic logic , 2018, Int. J. Approx. Reason..

[17]  Henry A. Kautz,et al.  Inferring High-Level Behavior from Low-Level Sensors , 2003, UbiComp.

[18]  Marc J. van Kreveld,et al.  Finding REMO - Detecting Relative Motion Patterns in Geospatial Lifelines , 2004, SDH.

[19]  Luis A. Leiva,et al.  Revisiting the k-means algorithm for fast trajectory segmentation , 2011, SIGGRAPH '11.

[20]  Toshiyuki Yamamoto,et al.  Identification of activity stop locations in GPS trajectories by density-based clustering method combined with support vector machines , 2015 .

[21]  Xing Xie,et al.  Understanding transportation modes based on GPS data for web applications , 2010, TWEB.

[22]  Yu Zheng,et al.  Trajectory Data Mining , 2015, ACM Trans. Intell. Syst. Technol..

[23]  Nils J. Nilsson,et al.  Probabilistic Logic * , 2022 .

[24]  Joachim Gudmundsson,et al.  Reporting flock patterns , 2008, Comput. Geom..

[25]  Maria Luisa Damiani,et al.  Extracting stay regions with uncertain boundaries from GPS trajectories: a case study in animal ecology , 2014, SIGSPATIAL/GIS.

[26]  David Poole,et al.  Negative probabilities in probabilistic logic programs , 2017, Int. J. Approx. Reason..

[27]  Xing Xie,et al.  Learning transportation mode from raw gps data for geographic applications on the web , 2008, WWW.

[28]  Hjp Harry Timmermans,et al.  Transportation mode recognition using GPS and accelerometer data , 2013 .

[29]  Nikos Pelekis,et al.  Segmentation and Sampling of Moving Object Trajectories Based on Representativeness , 2012, IEEE Transactions on Knowledge and Data Engineering.

[30]  Brigitte Jaumard,et al.  An Anytime Deduction Algorithm for the Probabilistic Logic and Entailment Problems , 2006, NAFIPS 2006 - 2006 Annual Meeting of the North American Fuzzy Information Processing Society.

[31]  Maarten Löffler,et al.  Segmentation of Trajectories on Nonmonotone Criteria , 2015, ACM Trans. Algorithms.

[32]  Fabrizio Riguzzi,et al.  A survey of lifted inference approaches for probabilistic logic programming under the distribution semantics , 2017, Int. J. Approx. Reason..

[33]  Nikos Pelekis,et al.  Clustering uncertain trajectories , 2011, Knowledge and Information Systems.

[34]  Luis A. Leiva,et al.  Warped K-Means: An algorithm to cluster sequentially-distributed data , 2013, Inf. Sci..

[35]  Nicholas Jing Yuan,et al.  Online Discovery of Gathering Patterns over Trajectories , 2014, IEEE Transactions on Knowledge and Data Engineering.

[36]  Baher Abdulhai,et al.  Real-Time Transportation Mode Detection via Tracking Global Positioning System Mobile Devices , 2009, J. Intell. Transp. Syst..

[37]  Hui Zhang,et al.  Image segmentation evaluation: A survey of unsupervised methods , 2008, Comput. Vis. Image Underst..

[38]  Stefano Spaccapietra,et al.  Semantic trajectories modeling and analysis , 2013, CSUR.

[39]  Jian Wang,et al.  Mining urban recurrent congestion evolution patterns from GPS-equipped vehicle mobility data , 2016, Inf. Sci..

[40]  King-Sun Fu,et al.  A survey on image segmentation , 1981, Pattern Recognit..

[41]  Thomas Lukasiewicz,et al.  Nonmonotonic probabilistic logics under variable-strength inheritance with overriding: Complexity, algorithms, and implementation , 2007, Int. J. Approx. Reason..

[42]  Philip S. Yu,et al.  Global distance-based segmentation of trajectories , 2006, KDD '06.

[43]  Christian S. Jensen,et al.  Discovery of convoys in trajectory databases , 2008, Proc. VLDB Endow..

[44]  Eric Horvitz,et al.  Predestination: Inferring Destinations from Partial Trajectories , 2006, UbiComp.

[45]  Jiawei Han,et al.  Swarm: Mining Relaxed Temporal Moving Object Clusters , 2010, Proc. VLDB Endow..