A subspace SQP method for equality constrained optimization

In this paper, we present a subspace method for solving large scale nonlinear equality constrained optimization problems. The proposed method is based on a SQP method combined with the limited-memory BFGS update formula. Each subproblem is solved in a theoretically suitable subspace. In the case of few constraints, we show that our search direction in the subspace is equivalent to that of the SQP subproblem in the full space. In the case of many constraints, we reduce the number of constraints in the subproblem and we show that the solution of the subspace subproblem is a descent direction of a particular exact penalty function. Global convergence properties of the proposed method are given for both cases. Numerical results are given to illustrate the soundness of the proposed model.

[1]  M. J. D. Powell,et al.  Variable Metric Methods for Constrained Optimization , 1982, ISMP.

[2]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[3]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[4]  Jinyan Fan,et al.  Subspace choices for the Celis-Dennis-Tapia problem , 2017 .

[5]  Ya-Xiang Yuan,et al.  A Subspace Study on Conjugate Gradient Algorithms , 1995 .

[6]  J. Stoer Großmann, Ch.; Terno, J.: Numerik der Optimierung Stuttgart, B. G. Teubner 1994. 351 S., DM 36.80. ISBN 3. 02090-4 (Teubner Studienbücher Mathematik) , 1995 .

[7]  Richard A. Tapia,et al.  A trust region strategy for nonlinear equality constrained op-timization , 1984 .

[8]  Nicholas I. M. Gould,et al.  SQP Methods for Large-Scale Nonlinear Programming , 1999, System Modelling and Optimization.

[9]  Ya-Xiang Yuan,et al.  A Subspace Version of the Powell–Yuan Trust-Region Algorithm for Equality Constrained Optimization , 2013 .

[10]  Nicholas I. M. Gould,et al.  Numerical methods for large-scale nonlinear optimization , 2005, Acta Numerica.

[11]  Jinyan Fan,et al.  On subspace properties of the quadratically constrained quadratic program , 2016 .

[12]  Jorge Nocedal,et al.  Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..

[13]  Olvi L. Mangasarian,et al.  Exact penalty functions in nonlinear programming , 1979, Math. Program..

[14]  Ya-Xiang Yuan,et al.  A subspace implementation of quasi-Newton trust region methods for unconstrained optimization , 2006, Numerische Mathematik.

[15]  Ya-Xiang Yuan,et al.  Subspace Techniques for Nonlinear Optimization , 2007 .

[16]  Ya-Xiang Yuan,et al.  Subspace methods for large scale nonlinear equations and nonlinear least squares , 2009 .

[17]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[18]  G. Stewart,et al.  Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .

[19]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[20]  Nicholas I. M. Gould,et al.  CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization , 2013, Computational Optimization and Applications.

[21]  Philip E. Gill,et al.  Reduced-Hessian Quasi-Newton Methods for Unconstrained Optimization , 2001, SIAM J. Optim..