A subspace SQP method for equality constrained optimization
暂无分享,去创建一个
Yoon Mo Jung | Sangwoon Yun | Jae Hwa Lee | Ya-xiang Yuan | S. Yun | Y. Jung | Ya-xiang Yuan | Jae Hwa Lee
[1] M. J. D. Powell,et al. Variable Metric Methods for Constrained Optimization , 1982, ISMP.
[2] M. J. D. Powell,et al. A fast algorithm for nonlinearly constrained optimization calculations , 1978 .
[3] J. Nocedal. Updating Quasi-Newton Matrices With Limited Storage , 1980 .
[4] Jinyan Fan,et al. Subspace choices for the Celis-Dennis-Tapia problem , 2017 .
[5] Ya-Xiang Yuan,et al. A Subspace Study on Conjugate Gradient Algorithms , 1995 .
[6] J. Stoer. Großmann, Ch.; Terno, J.: Numerik der Optimierung Stuttgart, B. G. Teubner 1994. 351 S., DM 36.80. ISBN 3. 02090-4 (Teubner Studienbücher Mathematik) , 1995 .
[7] Richard A. Tapia,et al. A trust region strategy for nonlinear equality constrained op-timization , 1984 .
[8] Nicholas I. M. Gould,et al. SQP Methods for Large-Scale Nonlinear Programming , 1999, System Modelling and Optimization.
[9] Ya-Xiang Yuan,et al. A Subspace Version of the Powell–Yuan Trust-Region Algorithm for Equality Constrained Optimization , 2013 .
[10] Nicholas I. M. Gould,et al. Numerical methods for large-scale nonlinear optimization , 2005, Acta Numerica.
[11] Jinyan Fan,et al. On subspace properties of the quadratically constrained quadratic program , 2016 .
[12] Jorge Nocedal,et al. Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..
[13] Olvi L. Mangasarian,et al. Exact penalty functions in nonlinear programming , 1979, Math. Program..
[14] Ya-Xiang Yuan,et al. A subspace implementation of quasi-Newton trust region methods for unconstrained optimization , 2006, Numerische Mathematik.
[15] Ya-Xiang Yuan,et al. Subspace Techniques for Nonlinear Optimization , 2007 .
[16] Ya-Xiang Yuan,et al. Subspace methods for large scale nonlinear equations and nonlinear least squares , 2009 .
[17] Thomas F. Coleman,et al. An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..
[18] G. Stewart,et al. Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .
[19] Paul T. Boggs,et al. Sequential Quadratic Programming , 1995, Acta Numerica.
[20] Nicholas I. M. Gould,et al. CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization , 2013, Computational Optimization and Applications.
[21] Philip E. Gill,et al. Reduced-Hessian Quasi-Newton Methods for Unconstrained Optimization , 2001, SIAM J. Optim..