FTIR spectroscopy of Ti-rich pargasites from Lherz and the detection of O2- at the anionic O3 site in amphiboles

Abstract This paper reports a single-crystal unpolarized-light FTIR study in the OH-stretching region of a suite of well-characterized Ti-rich pargasites from Lherz (French Pyrenees). All amphiboles studied have fairly constant M-site composition, with [6]Altot ~0.55 atoms per formula unit (apfu), [6]Ti ~0.45 apfu, and [6]Fe3+ ~0.40 apfu. SIMS and SREF data show all samples to have an O3 anion composition of OH ≈ O2- ≈ 1.0 apfu, with negligible F. The FTIR spectra show for all samples a broad absorption consisting of several overlapping bands; three main components can be recognized: ~3710, 3686, and 3660 cm-1, respectively, with an asymmetric tail extending to lower frequency. Six Gaussian components can be fitted to the spectra; comparison with spectra of both synthetic and natural pargasites allows five of these components to be assigned to local configurations involving OH-O2- at the O3 site, thus showing that coupling with an O2- anion through an A-cation significantly affects band position. Infrared spectroscopy can detect the presence of O2- in amphiboles in chemically favorable cases, i.e., in the absence of F. Moreover, the FTIR spectra show that all octahedral configurations involving M1Ti4+ or M1Fe3+M3Fe3+ are associated with O2- at both adjacent O3 sites, and that M3Al is locally associated with OH, confirming SRO models based on structure refinement results.

[1]  R. A. VrNruu,et al.  The OH-F substitution in Ti-rich potassium richterite : Rietveld structure refinement and FTIR and micro-Raman spectroscopic studies of synthetic amphiboles in the system K ' ONa ' O-CaO-MgO-SiOr-TiO 2H 2 O-HF , 2007 .

[2]  Canada.,et al.  A new anhydrous amphibole from the Hoskins mine , Grenfell , New South Wales , Australia : Description and crystal structure of ungarettiite , NaNar ( Mnl + Mn 3 + ) Si 8 O 22 O 2 , 2007 .

[3]  F. Hawthorne,et al.  SHORT-RANGE ORDER IN MINERALS: AMPHIBOLES , 2005 .

[4]  K. Tait,et al.  Dellaventuraite, NaNa2(MgMn23+Ti4+Li)Si8O22O2, a new anhydrous amphibole from the Kajlidongri Manganese Mine, Jhabua District, Madhya Pradesh, India , 2005 .

[5]  K. Tait,et al.  Al–Mg DISORDER IN A GEM-QUALITY PARGASITE FROM BAFFIN ISLAND, NUNAVUT, CANADA , 2001 .

[6]  F. Hawthorne,et al.  Constraints on F vs. OH incorporation in synthetic [6]Al-bearing monoclinic amphiboles , 2001 .

[7]  D. Jenkins,et al.  Short-range order in synthetic aluminous tremolites: An infrared and triple-quantum MAS NMR study , 2000 .

[8]  F. Hawthorne,et al.  The OH-F substitution in synthetic pargasite at 1.5 kbar, 850 °C , 2000 .

[9]  J. Grice,et al.  A new anhydrous amphibole from the Eifel region, Germany: Description and crystal structure of obertiite, NaNa2(Mg3Fe3+Ti4+)Si8O22O2 , 2000 .

[10]  M. Gottschalk,et al.  The determination of the cummingtonite content of synthetic tremolite , 1999 .

[11]  M. Tiepolo,et al.  Detection, crystal-chemical mechanisms and petrological implications of (super [6]) Ti (super 4+) partitioning in pargasite and kaersutite , 1999 .

[12]  F. Hawthorne,et al.  Short-range order of cations in synthetic amphiboles along the richterite-pargasite join , 1999 .

[13]  F. Hawthorne,et al.  Near-infrared study of short-range disorder of OH and F in monoclinic amphiboles , 1999 .

[14]  F. Hawthorne,et al.  The role of Ti in hydrogen-deficient amphiboles; sodic-calcic and sodic amphiboles from Coyote Peak, California , 1998 .

[15]  D. Jenkins,et al.  A Rietveld and infrared study of synthetic amphiboles along the potassium-richterite–tremolite join , 1997 .

[16]  F. Hawthorne Short-range order in amphiboles; a bond-valence approach , 1997 .

[17]  R. Vannucci,et al.  Infiltration metasomatism at Lherz as monitored by systematic ion-microprobe investigations close to a hornblendite vein , 1996 .

[18]  F. Hawthorne,et al.  Infrared spectroscopy of synthetic (Ni,Mg,Co)-potassium-richterite , 1996 .

[19]  D. Virgo,et al.  H DEFICIENCY IN KAERSUTITIC AMPHIBOLES : EXPERIMENTAL VERIFICATION , 1995 .

[20]  F. Hawthorne,et al.  (super [6]) Al disorder in amphiboles from mantle peridotites , 1995 .

[21]  H. S. Yoder,et al.  An experimental study of phase equilibria and Fe oxy-component in kaersutitic amphibole; implications for the f H2 and alpha H2O in the upper mantle , 1995 .

[22]  J. Grice,et al.  A new anhydrous amphibole from the Hoskins mine, Grenfell, New South Wales, Australia: Description and crystal structure of ungarettiite, NaNa2(Mn2+2Mn3+3 )Si8O22O2 , 1995 .

[23]  H. S. Yoder,et al.  An experimental study of phase equilibria and Fe oxy-component in kaersutitic amphibole: Implications for the fH₂ and aH₂O in the upper mantle , 1995 .

[24]  F. Hawthorne,et al.  The behaviour of Ti in amphiboles; I, Four- and six-coordinate Ti in richterite , 1992 .

[25]  George R. Rossman,et al.  The intensity of amphibole OH bands in the infrared absorption spectrum , 1991 .

[26]  A. A. Pinkerton,et al.  Effects of oxidation-dehydrogenation in tschermakitic hornblende , 1989 .

[27]  H. Fuess,,et al.  Refinement of the crystal structure of kaersutite (Vlčií Hora, Bohemia) from neutron diffraction , 1989 .

[28]  Z. Jirák,et al.  Distribution of Cations and the Proton Location in Kaersutite , 1986 .

[29]  N. Morimoto,et al.  Distribution of titanium atoms in oxy-kaersutite , 1975 .

[30]  R. Strens The Common Chain, Ribbon, and Ring Silicates , 1974 .

[31]  S. Saxena,et al.  Statistical chemistry of calcic amphiboles , 1970 .

[32]  W. Ernst,et al.  Mössbauer, infrared, x-ray and optical study of cation ordering and dehydrogenation in natural and heat-treated sodic amphiboles , 1970 .

[33]  B. Leake A catalog of analyzed calciferous and subcalciferous amphiboles together with their nomenclature and associated minerals , 1968 .

[34]  W. Addison,et al.  279. Amphiboles. Part II. The kinetics of the oxidation of crocidolite , 1962 .

[35]  C. C. Addison,et al.  278. Amphiboles. Part I. The oxidation of crocidolite , 1962 .

[36]  V. E. Barnes Changes in hornblende at about 800 °C , 1930 .