Fixed Polarity Reed-Muller Network Synthesis and Its Application in AND-OR/XOR-based Circuit Realization with Area-Power Trade-off

Abstract Though AND-OR and AND-XOR logic based minimization of combinational functions are well studied areas in the domain of very large scale integrated (VLSI) circuit synthesis, most of the real-life multi-output functions are a mix of OR and XOR dominated subfunctions. A judicious choice of OR and XOR decomposition strategy can thus result in the best possible realization of these. This paper explores this avenue and establishes the area-power trade-off existing in such a mixed synthesis approach. It shows on an average upto 16.91% improvement in area and upto 15.60% improvement in power over the AND-OR based logic minimization.

[1]  Suman Purwar An Efficient Method of Computing Generalized Reed-Muller Expansions from Binary Decision Diagram , 1991, IEEE Trans. Computers.

[2]  Arnold Weinberger High-Speed Programmable Logic Array Adders , 1979, IBM J. Res. Dev..

[3]  Rolf Drechsler,et al.  Genetic algorithm for minimisation of fixed polarity Reed-Muller expressions , 2000 .

[4]  Elena Dubrova,et al.  AOXMIN: A Three-Level Heuristic AND-OR-XOR Minimizer for Boolean Functions , 1997 .

[5]  Marek A. Perkowski,et al.  Fast exact and quasi-minimal minimization of highly testable fixed-polarity AND/XOR canonical networks , 1992, [1992] Proceedings 29th ACM/IEEE Design Automation Conference.

[6]  Makoto Ikeda,et al.  Logic synthesis for AND-XOR-OR type sense-amplifying PLA , 2002, Proceedings of ASP-DAC/VLSI Design 2002. 7th Asia and South Pacific Design Automation Conference and 15h International Conference on VLSI Design.

[7]  Maciej J. Ciesielski,et al.  BDS: a BDD-based logic optimization system , 2000, DAC.

[8]  A. Tran Graphical method for the conversion of minterms to Reed-Muller coefficients and the minimisation of exclusive-OR switching functions , 1987 .

[9]  Anantha P. Chandrakasan,et al.  Low-power CMOS digital design , 1992 .

[10]  P.W. Besslich,et al.  An efficient program for logic synthesis of mod-2 sum expressions , 1991, Euro ASIC '91.

[11]  S. Aborhey Reed-Muller tree-based minimisation of fixed polarity Reed-Muller expansions , 2001 .

[12]  Hafizur Rahaman,et al.  Easily testable realization of GRM and ESOP networks for detecting stuck-at and bridging faults , 2004, 17th International Conference on VLSI Design. Proceedings..

[13]  D. H. Green Reed-Muller expansions of incompletely specified functions , 1987 .

[14]  Elena Dubrova,et al.  AOXMIN-MV: A Heuristic Algorithm for AND-OR-XOR Minimization , 1999 .

[15]  M. Ciesielski,et al.  BDS: a BDD-based logic optimization system , 2000, Proceedings 37th Design Automation Conference.

[16]  Tsutomu Sasao,et al.  On the complexity of mod-2l sum PLA's , 1990 .

[17]  Tsutomu Sasao,et al.  On the Complexity of Three-Level Logic Circuits(Complexity Theory and Related Topics) , 1990 .

[18]  Jean-Pierre Deschamps,et al.  Discrete and switching functions , 1978 .

[19]  Tsutomu Sasao,et al.  An optimization of AND-OR-EXOR three-level networks , 1997, Proceedings of ASP-DAC '97: Asia and South Pacific Design Automation Conference.

[20]  Russell Tessier,et al.  BDD-based logic synthesis for LUT-based FPGAs , 2002, TODE.

[21]  Santanu Chattopadhyay,et al.  Synthesis of Highly Testable Fixed-Polarity AND-XOR Canonical Networks-A Genetic Algorithm-Based Approach , 1996, IEEE Trans. Computers.

[22]  Rolf Drechsler,et al.  A Genetic Algorithm for Minimization of Fixed Polarity Reed-Muller Expressions , 1995, ICANNGA.

[23]  Tsutomu Sasao EXMIN2: a simplification algorithm for exclusive-OR-sum-of-products expressions for multiple-valued-input two-valued-output functions , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[24]  Md. Mozammel Huq Azad Khan and Md. Shamsul Alam Mapping of fixed polarity Reed-Muller coefficients from minterms and the minimization of fixed polarity Reed-Muller expressions , 1997 .

[25]  Tsutomu Sasao And-Exor Expressions and their Optimization , 1993 .

[26]  Mozammel H. A. Khan,et al.  Mapping of on-set fixed polarity Reed-Muller coefficients from on-set canonical sum of products coefficients and the minimization of pseudo Reed-Muller expressions , 1999 .

[27]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[28]  Irving S. Reed,et al.  A class of multiple-error-correcting codes and the decoding scheme , 1954, Trans. IRE Prof. Group Inf. Theory.

[29]  Low power logic synthesis for XOR based circuits , 1997, 1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD).