About Classification Methods Based on Tensor Modelling for Hyperspectral Images

Denoising and Dimensionality reduction (DR) are key issue to improve the classifiers efficiency for Hyperspectral images (HSI). The multi-way Wiener filtering recently developed is used, Principal and independent component analysis (PCA, ICA) and projection pursuit (PP) approaches to DR have been investigated. These matrix algebra methods are applied on vectorized images. Thereof, the spatial rearrangement is lost. To jointly take advantage of the spatial and spectral information, HSI has been recently represented as tensor. Offering multiple ways to decompose data orthogonally, we introduced filtering and DR methods based on multilinear algebra tools. The DR is performed on spectral way using PCA, or PP joint to an orthogonal projection onto a lower subspace dimension of the spatial ways. We show the classification improvement using the introduced methods in function to existing methods. This experiment is exemplified using real-world HYDICE data.

[1]  Robert W. Basedow,et al.  HYDICE system performance: an update , 1996, Optics + Photonics.

[2]  Chein-I Chang,et al.  Linear spectral random mixture analysis for hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[3]  David A. Landgrebe,et al.  Hyperspectral Image Data Analysis as a High Dimensional Signal Processing Problem , 2002 .

[4]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[5]  俊一 甘利,et al.  A. Hyvärinen, J. Karhunen and E. Oja, Independent Component Analysis, Jhon Wiley & Sons, 2001年,504ページ. (根本幾・川勝真喜訳:独立成分分析——信号解析の新しい世界,東京電機大学出版局,2005年,532ページ.) , 2010 .

[6]  Jing Wang,et al.  Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Salah Bourennane,et al.  Denoising and Dimensionality Reduction Using Multilinear Tools for Hyperspectral Images , 2008, IEEE Geoscience and Remote Sensing Letters.

[8]  Salah Bourennane,et al.  Improvement of Target Detection Methods by Multiway Filtering , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[10]  Demetri Terzopoulos,et al.  Multilinear independent components analysis , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[11]  Nikos D. Sidiropoulos,et al.  Blind PARAFAC receivers for DS-CDMA systems , 2000, IEEE Trans. Signal Process..

[12]  Salah Bourennane,et al.  Nonorthogonal Tensor Matricization for Hyperspectral Image Filtering , 2008, IEEE Geoscience and Remote Sensing Letters.

[13]  Salah Bourennane,et al.  Survey on tensor signal algebraic filtering , 2007, Signal Process..

[14]  David A. Landgrebe,et al.  Hyperspectral data analysis and supervised feature reduction via projection pursuit , 1999, IEEE Trans. Geosci. Remote. Sens..

[15]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[16]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[17]  David A. Landgrebe,et al.  Hyperspectral image data analysis , 2002, IEEE Signal Process. Mag..

[18]  Tamara G. Kolda,et al.  Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..

[19]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[20]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[21]  Tamir Hazan,et al.  Sparse image coding using a 3D non-negative tensor factorization , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[22]  Sankar K. Pal,et al.  International Journal of Signal Processing , Image Processing and Pattern Recognition , 2008 .

[23]  Luis O. Jimenez-Rodriguez,et al.  Unsupervised Linear Feature-Extraction Methods and Their Effects in the Classification of High-Dimensional Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Chein-I Chang,et al.  Unsupervised hyperspectral image analysis with projection pursuit , 2000, IEEE Trans. Geosci. Remote. Sens..