A new efficient variational model for multiplicative noise removal

ABSTRACT In this paper, based on the approximation of the Taylor expansion, a novel fidelity term is formulated. We propose a new variational image restoration model to recover an image from its multiplicative noised version. We show that the proposed model is strictly convex and has a unique solution so that the model can be performed by the primal–dual method. Compared with other models, the proposed model is able to not only deal with various problems of different type noises, such as the multiplicative Beta noise, F noise, Gaussian noise, but also take significantly less computational time.

[1]  Jin Huang,et al.  Alternating direction method for the high-order total variation-based Poisson noise removal problem , 2014, Numerical Algorithms.

[2]  Tieyong Zeng,et al.  Two-Step Approach for the Restoration of Images Corrupted by Multiplicative Noise , 2013, SIAM J. Sci. Comput..

[3]  Lihong Huang,et al.  Poissonian image reconstruction using alternating direction algorithm , 2013, J. Electronic Imaging.

[4]  Tieyong Zeng,et al.  A Convex Variational Model for Restoring Blurred Images with Multiplicative Noise , 2013, SIAM J. Imaging Sci..

[5]  Gabriele Steidl,et al.  Removing Multiplicative Noise by Douglas-Rachford Splitting Methods , 2010, Journal of Mathematical Imaging and Vision.

[6]  Pierre Weiss,et al.  A Variational Model for Multiplicative Structured Noise Removal , 2016, Journal of Mathematical Imaging and Vision.

[7]  G. Aubert,et al.  A VARIATIONAL APPROACH TO REMOVE MULTIPLICATIVE NOISE , 2006 .

[8]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[9]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[10]  Dominic Welsh,et al.  Probability: An Introduction , 1986 .

[11]  Carola-Bibiane Schönlieb,et al.  Bilevel Parameter Learning for Higher-Order Total Variation Regularisation Models , 2015, Journal of Mathematical Imaging and Vision.

[12]  Rachid Deriche,et al.  Image Sequence Analysis via Partial Differential Equations , 1999, Journal of Mathematical Imaging and Vision.

[13]  Daniel Cremers,et al.  An algorithm for minimizing the Mumford-Shah functional , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[14]  José M. Bioucas-Dias,et al.  Restoration of Poissonian Images Using Alternating Direction Optimization , 2010, IEEE Transactions on Image Processing.

[15]  Fang Liu,et al.  Total generalized variation restoration with non-quadratic fidelity , 2018, Multidimens. Syst. Signal Process..

[16]  Xiaoping Yang,et al.  A Variational Model to Remove the Multiplicative Noise in Ultrasound Images , 2010, Journal of Mathematical Imaging and Vision.

[17]  Pascal Getreuer,et al.  A Variational Model for the Restoration of MR Images Corrupted by Blur and Rician Noise , 2011, ISVC.

[18]  José M. Bioucas-Dias,et al.  Multiplicative Noise Removal Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[19]  Jianing Shi,et al.  A Nonlinear Inverse Scale Space Method for a Convex Multiplicative Noise Model , 2008, SIAM J. Imaging Sci..

[20]  Jie Huang,et al.  Fast reduction of speckle noise in real ultrasound images , 2013, Signal Process..

[21]  Lixin Shen,et al.  Multiplicative noise removal in imaging: An exp-model and its fixed-point proximity algorithm , 2016 .

[22]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[23]  J. Koko,et al.  An Augmented Lagrangian Method for , 2010 .

[24]  Xue-Cheng Tai,et al.  Augmented Lagrangian Method, Dual Methods, and Split Bregman Iteration for ROF, Vectorial TV, and High Order Models , 2010, SIAM J. Imaging Sci..

[25]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[26]  Gilles Aubert,et al.  A Variational Approach to Removing Multiplicative Noise , 2008, SIAM J. Appl. Math..

[27]  Marc Sigelle,et al.  A note on nice-levelable MRFs for SAR image denoising with contrast preservation Champs de Markov bien nivelés pour la restauration d'Images ROS avec préservation du contraste , 2006 .

[28]  Stanley Osher,et al.  Multiplicative Denoising and Deblurring: Theory and Algorithms , 2003 .

[29]  Tieyong Zeng,et al.  Multiplicative Noise Removal Based on Unbiased Box-Cox Transformation , 2017 .

[30]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[31]  Michael K. Ng,et al.  A New Total Variation Method for Multiplicative Noise Removal , 2009, SIAM J. Imaging Sci..