Chemical Approaches to DNA Nanotechnology

Due to its self‐assembling nature, DNA is undoubtedly an excellent molecule for the creation of various multidimensional nanostructures and the placement of functional molecules and materials. DNA molecules behave according to the programs of their sequences. Mixtures of numbers of DNA molecules can be placed precisely and organized into single structures to form nanoarchitectures. Once the appropriate sequences for the target nanostructure are established, the predesigned structure can be built up by self‐assembly of the designed DNA strands. DNA nanotechnology has already reached the stage at which the organization of desired functional molecules and nanomaterials can be programmed on a defined DNA scaffold. In this review, we will focus on DNA nanotechnology and describe the potential of synthetic chemistry to contribute to the further development of DNA nanomaterials.

[1]  Masayuki Endo,et al.  Control of a double helix DNA assembly by use of cross-linked oligonucleotides. , 2003, Journal of the American Chemical Society.

[2]  Eugen Katz,et al.  Integrierte Hybridsysteme aus Nanopartikeln und Biomolekülen: Synthese, Eigenschaften und Anwendungen , 2004 .

[3]  Nadrian C. Seeman,et al.  Translation of DNA Signals into Polymer Assembly Instructions , 2004, Science.

[4]  E. Stulz,et al.  DNA as supramolecular scaffold for porphyrin arrays on the nanometer scale. , 2007, Journal of the American Chemical Society.

[5]  Jeffrey G. Mandell,et al.  Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleases , 2006, Nucleic Acids Res..

[6]  Kurt V Gothelf,et al.  A modular approach to DNA-programmed self-assembly of macromolecular nanostructures. , 2005, Chemistry.

[7]  H. Wagenknecht,et al.  Strukturempfindlicher und selbstassoziierter helicaler Pyrenstapel auf Basis der DNA‐Architektur , 2006 .

[8]  Hao Yan,et al.  DNA-templated self-assembly of protein and nanoparticle linear arrays. , 2004, Journal of the American Chemical Society.

[9]  C. Niemeyer Bioorganic applications of semisynthetic DNA-protein conjugates. , 2001, Chemistry.

[10]  Faisal A. Aldaye,et al.  Assembling Materials with DNA as the Guide , 2008, Science.

[11]  U. Simon,et al.  Gesteuerte Keimbildung bei der DNA-Metallisierung† , 2009 .

[12]  Christof M Niemeyer,et al.  Rational design of DNA nanoarchitectures. , 2006, Angewandte Chemie.

[13]  Itamar Willner,et al.  Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. , 2004, Angewandte Chemie.

[14]  Masayuki Endo,et al.  DNA tube structures controlled by a four-way-branched DNA connector. , 2005, Angewandte Chemie.

[15]  C. Mirkin,et al.  Scanometric DNA array detection with nanoparticle probes. , 2000, Science.

[16]  Hao Yan,et al.  A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures. , 2006, Journal of the American Chemical Society.

[17]  Scheffler,et al.  Self-Assembly of Trisoligonucleotidyls: The Case for Nano-Acetylene and Nano-Cyclobutadiene. , 1999, Angewandte Chemie.

[18]  Cees Dekker,et al.  Nanotechnology: Carbon nanotubes with DNA recognition , 2002, Nature.

[19]  Karin Musier-Forsyth,et al.  Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. , 2005, Nano letters.

[20]  Jie Chao,et al.  Dynamic Patterning Programmed by DNA Tiles Captured on a DNA Origami Substrate , 2009, Nature nanotechnology.

[21]  T. Majima,et al.  Parallel, double-helix DNA nanostructures using interstrand cross-linked oligonucleotides with bismaleimide linkers. , 2003, Angewandte Chemie.

[22]  C. Mao,et al.  Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra , 2008, Nature.

[23]  C. Mirkin Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. , 2000, Inorganic chemistry.

[24]  Hao Yan,et al.  Self-assembled peptide nanoarrays: an approach to studying protein-protein interactions. , 2007, Angewandte Chemie.

[25]  Liming Dai,et al.  DNA-directed self-assembling of carbon nanotubes. , 2005, Journal of the American Chemical Society.

[26]  N. Seeman,et al.  Modifying the Surface Features of Two-Dimensional DNA Crystals , 1999 .

[27]  N C Seeman,et al.  Three-arm nucleic acid junctions are flexible. , 1986, Nucleic acids research.

[28]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[29]  Andrew J Turberfield,et al.  Single-molecule protein encapsulation in a rigid DNA cage. , 2006, Angewandte Chemie.

[30]  G. V. Kiedrowski,et al.  Selbstorganisation eines DNA‐Dodekaeders aus 20 Trisoligonucleotiden mit C3h‐Linker , 2008 .

[31]  Hao Yan,et al.  Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays , 2008, Science.

[32]  E. Stulz,et al.  Supramolecular helical porphyrin arrays using DNA as a scaffold. , 2008, Organic & biomolecular chemistry.

[33]  Günter von Kiedrowski,et al.  DNA nanotechnology: Chemical copying of connectivity , 2002, Nature.

[34]  Xiaoyu Li,et al.  DNA‐gestützte organische Synthese: die Strategie der Natur zur Steuerung chemischer Reaktivität übertragen auf synthetische Moleküle , 2004 .

[35]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[36]  E. W. Meijer,et al.  About Supramolecular Assemblies of π-Conjugated Systems , 2005 .

[37]  Udo Feldkamp,et al.  Rationaler Entwurf von DNA‐Nanoarchitekturen , 2006 .

[38]  Hao Yan,et al.  Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles , 2009, Science.

[39]  Chad A. Mirkin,et al.  Programmed Materials Synthesis with DNA. , 1999, Chemical reviews.

[40]  Baoquan Ding,et al.  Pseudohexagonal 2D DNA crystals from double crossover cohesion. , 2004, Journal of the American Chemical Society.

[41]  Russell P. Goodman,et al.  Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication , 2005, Science.

[42]  Structural arrangement of two DNA double helices using cross-linked oligonucleotide connectors. , 2004, Chemical communications.

[43]  Faisal A. Aldaye,et al.  Modular access to structurally switchable 3D discrete DNA assemblies. , 2007, Journal of the American Chemical Society.

[44]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[45]  Neuartige DNA-Ringe mit starren tetraedrischen Spacern† , 1997 .

[46]  Lars Kolster Petersen,et al.  A yoctoliter-scale DNA reactor for small-molecule evolution. , 2009, Journal of the American Chemical Society.

[47]  William M. Shih,et al.  A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron , 2004, Nature.

[48]  N. Seeman DNA in a material world , 2003, Nature.

[49]  Kurt V Gothelf,et al.  Modular DNA-programmed assembly of linear and branched conjugated nanostructures. , 2004, Journal of the American Chemical Society.

[50]  Luc Jaeger,et al.  Controlled spacing of cationic gold nanoparticles by nanocrown RNA. , 2005, Journal of the American Chemical Society.

[51]  J. Reif,et al.  Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. , 2006, Angewandte Chemie.

[52]  Lifeng Chi,et al.  Supramolecular Nanocircles Consisting of Streptavidin and DNA , 2000 .

[53]  G. von Kiedrowski,et al.  Self-assembly of a DNA dodecahedron from 20 trisoligonucleotides with C(3h) linkers. , 2008, Angewandte Chemie.

[54]  E. W. Meijer,et al.  Supramolecular electronics; nanowires from self-assembled pi-conjugated systems. , 2005, Chemical communications.

[55]  A. Turberfield,et al.  Self-assembly of chiral DNA nanotubes. , 2004, Journal of the American Chemical Society.

[56]  H. Hansma,et al.  Building Programmable Jigsaw Puzzles with RNA , 2004, Science.

[57]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[58]  Hao Yan,et al.  Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. , 2007, Journal of the American Chemical Society.

[59]  N. Seeman,et al.  Operation of a DNA Robot Arm Inserted into a 2D DNA Crystalline Substrate , 2006, Science.

[60]  E. Stulz,et al.  Duplex stabilization and energy transfer in zipper porphyrin-DNA. , 2009, Angewandte Chemie.

[61]  Hao Yan,et al.  Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. , 2008, Journal of the American Chemical Society.

[62]  N. Seeman,et al.  Assembly of Borromean rings from DNA , 1997, Nature.

[63]  C. Mao,et al.  Conformational flexibility facilitates self-assembly of complex DNA nanostructures , 2008, Proceedings of the National Academy of Sciences.

[64]  T. Majima,et al.  Four-way-branched DNA-porphyrin conjugates for construction of four double-helix-DNA assembled structures. , 2005, The Journal of organic chemistry.

[65]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[66]  Daniel F. Voytas,et al.  Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool , 2007, Nucleic Acids Res..

[67]  Donald E. Bergstrom,et al.  Assembly of Novel DNA Cycles with Rigid Tetrahedral Linkers , 1997 .

[68]  Faisal A. Aldaye,et al.  Guest-mediated access to a single DNA nanostructure from a library of multiple assemblies. , 2007, Journal of the American Chemical Society.

[69]  Hao Yan,et al.  Bridging one helical turn in double-stranded DNA by templated dimerization of molecular rods. , 2008, Angewandte Chemie.

[70]  H. Wagenknecht,et al.  Structure-sensitive and self-assembled helical pyrene array based on DNA architecture. , 2006, Angewandte Chemie.

[71]  Hao Yan,et al.  DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. , 2006, Angewandte Chemie.

[72]  T. Carell,et al.  Programmable self-assembly of metal ions inside artificial DNA duplexes , 2006, Nature nanotechnology.

[73]  Mitsunobu Nakamura,et al.  Pyrene aromatic arrays on RNA duplexes as helical templates. , 2007, Organic & biomolecular chemistry.

[74]  N. Seeman Nucleic Acid Nanostructures and Topology. , 1998, Angewandte Chemie.

[75]  L. McLaughlin,et al.  Four-arm oligonucleotide Ni(II)-cyclam-centered complexes as precursors for the generation of supramolecular periodic assemblies. , 2004, Journal of the American Chemical Society.

[76]  Itamar Willner,et al.  Photoelectrochemistry with Controlled DNA-Cross-Linked CdS Nanoparticle Arrays This research is supported by The U.S.-Israel Binational Science Foundation. The Max Planck Research Award for International Cooperation (I.W.) is gratefully acknowledged. , 2001, Angewandte Chemie.

[77]  J. Reif,et al.  DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[78]  E. Winfree,et al.  Design and characterization of programmable DNA nanotubes. , 2004, Journal of the American Chemical Society.

[79]  J. Reif,et al.  DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires , 2003, Science.

[80]  N. Seeman,et al.  Six-helix bundles designed from DNA. , 2005, Nano letters.

[81]  N. Seeman,et al.  DNA double-crossover molecules. , 1993, Biochemistry.

[82]  C. Niemeyer The developments of semisynthetic DNA-protein conjugates. , 2002, Trends in biotechnology.

[83]  N. Seeman,et al.  Construction of a DNA-Truncated Octahedron , 1994 .

[84]  Chad A Mirkin,et al.  The evolution of dip-pen nanolithography. , 2004, Angewandte Chemie.

[85]  Jung Woon Yang,et al.  Synthesis of DNA triangles with vertexes of bis(terpyridine)iron(II) complexes. , 2004, Journal of the American Chemical Society.

[86]  Russell P. Goodman,et al.  Reconfigurable, braced, three-dimensional DNA nanostructures. , 2008, Nature nanotechnology.

[87]  N. Seeman,et al.  An immobile nucleic acid junction constructed from oligonucleotides , 1983, Nature.

[88]  H. Sleiman,et al.  Solid-Phase Synthesis of Transition Metal Linked, Branched Oligonucleotides This work was supported by NSERC (Canada), CFI (Canada) and FCAR (Quebec). The authors gratefully acknowledge Prof. M. J. Damha and his laboratory, McGill University, for helpful discussion. , 2001, Angewandte Chemie.

[89]  Nadrian C. Seeman Nanostrukturen und Topologien von Nucleinsäuren , 1998 .

[90]  David R. Liu,et al.  DNA-templated organic synthesis: nature's strategy for controlling chemical reactivity applied to synthetic molecules. , 2004, Angewandte Chemie.

[91]  T. Carell,et al.  Controlled nucleation of DNA metallization. , 2009, Angewandte Chemie.

[92]  L. McLaughlin,et al.  Ru(II) tris(bipyridyl) complexes with six oligonucleotide arms as precursors for the generation of supramolecular assemblies. , 2004, Angewandte Chemie.

[93]  H. Sleiman,et al.  Self-assembly of cyclic metal-DNA nanostructures using ruthenium tris(bipyridine)-branched oligonucleotides. , 2004, Angewandte Chemie.

[94]  Shawn M. Douglas,et al.  DNA-nanotube-induced alignment of membrane proteins for NMR structure determination , 2007, Proceedings of the National Academy of Sciences.

[95]  Hao Yan,et al.  Self-assembled signaling aptamer DNA arrays for protein detection. , 2006, Angewandte Chemie.

[96]  Chad A. Mirkin,et al.  DNA-Directed Synthesis of Binary Nanoparticle Network Materials , 1998 .

[97]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[98]  F. Simmel Three-dimensional nanoconstruction with DNA. , 2008, Angewandte Chemie.

[99]  Hao Yan,et al.  DNA-tile-directed self-assembly of quantum dots into two-dimensional nanopatterns. , 2008, Angewandte Chemie.

[100]  Mitsunobu Nakamura,et al.  Helical pyrene-array along the outside of duplex RNA. , 2005, Chemical communications.

[101]  C. Niemeyer REVIEW Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science , 2022 .

[102]  C. Niemeyer,et al.  Supramolekulare Nanoringe aus Streptavidin und DNA , 2000 .

[103]  K U Mir,et al.  Oligonucleotide dendrimers: stable nano-structures. , 1999, Nucleic acids research.

[104]  P. Dervan,et al.  Addressing single molecules on DNA nanostructures. , 2007, Angewandte Chemie.

[105]  Hongjie Dai,et al.  Carbon nanotubes: synthesis, integration, and properties. , 2002, Accounts of chemical research.

[106]  R. Häner,et al.  Helical arrangement of interstrand stacked pyrenes in a DNA framework. , 2007, Angewandte Chemie.

[107]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[108]  N. Seeman,et al.  A robust DNA mechanical device controlled by hybridization topology , 2002, Nature.

[109]  N. Seeman,et al.  Emulating biology: Building nanostructures from the bottom up , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[110]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[111]  Hao Yan,et al.  Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. , 2005, Nano letters.

[112]  Kentaro Tanaka,et al.  A Discrete Self-Assembled Metal Array in Artificial DNA , 2003, Science.

[113]  D. Gowers,et al.  Towards mixed sequence recognition by triple helix formation. , 1999, Nucleic acids research.

[114]  Hiroshi Sugiyama,et al.  Synthesis and biological properties of sequence-specific DNA-alkylating pyrrole-imidazole polyamides. , 2006, Accounts of chemical research.

[115]  C. Murphy,et al.  Oligonucleotide-directed assembly of materials: defined oligomers. , 2001, Journal of the American Chemical Society.

[116]  J. Reif,et al.  Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes , 2000 .

[117]  Michael Krueger,et al.  Sequence-Specific Molecular Lithography on Single DNA Molecules , 2002, Science.

[118]  Kurt V Gothelf,et al.  DNA-programmed assembly of nanostructures. , 2005, Organic & biomolecular chemistry.

[119]  Jörg Peplies,et al.  Covalent DNA-Streptavidin Conjugates as Building Blocks for Novel Biometallic Nanostructures. , 1998, Angewandte Chemie.

[120]  P. Dervan,et al.  Molecular recognition of DNA by small molecules. , 2001, Bioorganic & medicinal chemistry.

[121]  E. Southern,et al.  Oligonucleotide dendrimers: synthesis and use as polylabelled DNA probes. , 1997, Nucleic acids research.

[122]  L. McLaughlin,et al.  Design and synthesis of DNA-tethered ruthenium complexes that self-assemble into linear arrays. , 2003, Chemical communications.

[123]  N. Seeman,et al.  Six-helix and eight-helix DNA nanotubes assembled from half-tubes. , 2007, Nano letters.

[124]  Hao Yan,et al.  Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. , 2008, Nature nanotechnology.

[125]  Chad A. Mirkin,et al.  Zur Entwicklung der Dip‐Pen‐Nanolithographie , 2004 .

[126]  Robert D. Barish,et al.  Three-helix bundle DNA tiles self-assemble into 2D lattice or 1D templates for silver nanowires. , 2005, Nano letters.

[127]  F. Simmel Dreidimensionale Nanokonstruktion mit DNA , 2008 .

[128]  N. Seeman,et al.  Synthesis from DNA of a molecule with the connectivity of a cube , 1991, Nature.

[129]  Masayuki Endo,et al.  Programmable DNA translation system using cross-linked DNA mediators. , 2005, Chemical communications.

[130]  C. Mao,et al.  Tensegrity: construction of rigid DNA triangles with flexible four-arm DNA junctions. , 2004, Journal of the American Chemical Society.

[131]  Alexander D. Q. Li,et al.  Alternating DNA and pi-conjugated sequences. Thermophilic foldable polymers. , 2003, Journal of the American Chemical Society.

[132]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[133]  P. Dervan,et al.  Programming multiple protein patterns on a single DNA nanostructure. , 2008, Journal of the American Chemical Society.

[134]  Harry M. T. Choi,et al.  Programming DNA Tube Circumferences , 2008, Science.

[135]  Günter von Kiedrowski,et al.  Selbstanordnung von Trisoligonucleotidylen: „Nano‐Acetylen”︁ und „Nano‐Cyclobutadien”︁ , 1999 .

[136]  Wolfgang Bürger,et al.  Kovalente DNA‐Streptavidin‐Konjugate als Bausteine für neuartige biometallische Nanostrukturen , 1998 .

[137]  Faisal A. Aldaye,et al.  Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles. , 2006, Angewandte Chemie.

[138]  Mitsunobu Nakamura,et al.  Pyrene-zipper array assembled via RNA duplex formation. , 2008, Journal of the American Chemical Society.

[139]  C. Niemeyer,et al.  Nanopartikel, Proteine und Nucleinsäuren: Die Biotechnologie begegnet den Materialwissenschaften , 2001 .

[140]  E. Braun,et al.  DNA-templated assembly and electrode attachment of a conducting silver wire , 1998, Nature.