Demonstration of high speed optical transmission at 2 µm in titanium dioxide waveguides

We demonstrate the transmission of a 10-Gbit/s optical data signal in the 2 µm waveband into titanium dioxide waveguides. Error-free transmissions have been experimentally achieved taking advantage of a 23-dB insertion loss fiber-to-fiber grating-based injection test-bed platform.

[1]  R. Baets,et al.  Efficient, Broadband and Compact Metal Grating Couplers for Silicon-on-Insulator Waveguides , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[2]  Jan Kischkat,et al.  Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. , 2012, Applied optics.

[3]  David J. Richardson,et al.  High-Capacity Directly Modulated Optical Transmitter for 2-μm Spectral Region , 2015, Journal of Lightwave Technology.

[4]  Eric Mazur,et al.  Polycrystalline anatase titanium dioxide microring resonators with negative thermo-optic coefficient , 2015 .

[5]  Marco N. Petrovich,et al.  100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber. , 2015, Optics express.

[6]  David J Richardson,et al.  Filling the Light Pipe , 2010, Science.

[7]  B Corbett,et al.  10 Gb/s InP-based Mach-Zehnder modulator for operation at 2 μm wavelengths. , 2015, Optics express.

[8]  Jin Suntivich,et al.  Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process. , 2015, Optics express.

[9]  Yongmin Jung,et al.  Thulium-doped fiber amplifier for optical communications at 2µm , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[10]  CMOS-compatible titanium dioxide deposition for athermalization of silicon photonic waveguides , 2013, CLEO: 2013.

[11]  D. J. Richardson,et al.  New optical fibres for high-capacity optical communications , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  A D Ellis,et al.  Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber. , 2013, Optics express.

[13]  Zuyuan He,et al.  Transmission of IM/DD Signals at 2 μm Wavelength Using PAM and CAP , 2016, IEEE Photonics Journal.

[14]  M. Lipson,et al.  Broadband mid-infrared frequency comb generation in a Si3N4 microresonator , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[15]  Eric Mazur,et al.  Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices. , 2012, Optics express.

[16]  F. H. Peters,et al.  InP-Based Active and Passive Components for Communication Systems at 2 μm , 2015, Journal of Lightwave Technology.

[17]  Eric Mazur,et al.  Integrated TiO2 resonators for visible photonics. , 2011, Optics letters.

[18]  D. Saad,et al.  Communication networks beyond the capacity crunch , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  P. Roberts,et al.  Ultimate low loss of hollow-core photonic crystal fibres. , 2005, Optics express.

[20]  Markku Kuittinen,et al.  Titanium dioxide slot waveguides for visible wavelengths. , 2015, Applied optics.

[21]  Eric Mazur,et al.  Spectral broadening in anatase titanium dioxide waveguides at telecommunication and near-visible wavelengths. , 2013, Optics express.

[22]  E.B. Desurvire,et al.  Capacity Demand and Technology Challenges for Lightwave Systems in the Next Two Decades , 2006, Journal of Lightwave Technology.

[23]  Marco N. Petrovich,et al.  Dense WDM transmission at 2  μm enabled by an arrayed waveguide grating. , 2015, Optics letters.