Perturbation of frame sequences in shift-invariant spaces
暂无分享,去创建一个
[1] Hong Oh Kim,et al. Characterization of the closedness of the sum of two shift-invariant spaces☆ , 2006 .
[2] Hong Oh Kim,et al. The infimum cosine angle between two finitely generated shift-invariant spaces and its applications , 2005 .
[3] Yonina C. Eldar,et al. Oblique dual frames and shift-invariant spaces , 2004 .
[4] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[5] Wenchang Sun,et al. Irregular wavelet/Gabor frames , 2002 .
[6] Wenchang Sun,et al. On the Stability of Gabor Frames , 2001, Adv. Appl. Math..
[7] O. Christensen,et al. Perturbation of Frames for a Subspace of a Hilbert Space , 2000 .
[8] Marcin Bownik. The Structure of Shift-Invariant Subspaces of L2(Rn)☆ , 2000 .
[9] Ole Christensen,et al. Operators with Closed Range, Pseudo-Inverses, and Perturbation of Frames for a Subspace , 1999, Canadian Mathematical Bulletin.
[10] A. Ron,et al. Frames and Stable Bases for Shift-Invariant Subspaces of L2(ℝd) , 1995, Canadian Journal of Mathematics.
[11] O. Christensen. A Paley-Wiener theorem for frames , 1995 .
[12] R. A. Zalik,et al. On the Stability of Frames and Riesz Bases , 1995 .
[13] Michael Unser,et al. A general sampling theory for nonideal acquisition devices , 1994, IEEE Trans. Signal Process..
[14] Marcin Bownik,et al. Biorthogonal wavelets, MRA's and shift-invariant spaces , 2004 .
[15] A. Aldroubi. Oblique projections in atomic spaces , 1996 .