Variations in the Hamaker constant of hematite particles in water

[1]  F. Hu,et al.  Aggregation of polydisperse soil colloidal particles: Dependence of Hamaker constant on particle size , 2020 .

[2]  Y. Adachi,et al.  Effect of anionic surfactants on the stability ratio and electrophoretic mobility of colloidal hematite particles , 2016 .

[3]  K Jiang,et al.  Temperature and size-dependent Hamaker constants for metal nanoparticles , 2016, Nanotechnology.

[4]  Anatoliy O. Pinchuk,et al.  Size-Dependent Hamaker Constant for Silver Nanoparticles , 2012 .

[5]  L. Bergström,et al.  Hamaker constants of iron oxide nanoparticles. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[6]  S. Bhattacharjee,et al.  Is surface roughness a "scapegoat" or a primary factor when defining particle-substrate interactions? , 2010, Langmuir : the ACS journal of surfaces and colloids.

[7]  A. Curtis,et al.  DLVO interaction energy between a sphere and a nano-patterned plate , 2008 .

[8]  D. Fornasiero,et al.  Colloid stability of synthetic titania and the influence of surface roughness. , 2005, Journal of colloid and interface science.

[9]  R. French Origins and Applications of London Dispersion Forces and Hamaker Constants in Ceramics , 2004 .

[10]  M. Elimelech,et al.  Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: implications to iron depletion in estuaries. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[11]  Hans-Jürgen Butt,et al.  Physics and Chemistry of Interfaces , 2003 .

[12]  J. Addai-Mensah,et al.  Viscosity, Density, and Refractive Index of Aqueous Sodium and Potassium Aluminate Solutions , 2000 .

[13]  M. Borkovec,et al.  Charging and Aggregation Properties of Carboxyl Latex Particles: Experiments versus DLVO Theory , 2000 .

[14]  P. Sipos,et al.  Dielectric Relaxation of Dilute Aqueous NaOH, NaAl(OH)4, and NaB(OH)4 , 1999 .

[15]  Behrens,et al.  Absolute Aggregation Rate Constants of Hematite Particles in Aqueous Suspensions: A Comparison of Two Different Surface Morphologies. , 1997, Journal of colloid and interface science.

[16]  Y. Chiang,et al.  Comparisons of Hamaker constants for ceramic systems with intervening vacuum or water : From force laws and physical properties , 1996 .

[17]  W. Brown,et al.  Surface characteristics of polystyrene latex particles and comparison with styrene-butadiene copolymer latex particles using dynamic light scattering and electrophoretic light scattering measurements , 1996 .

[18]  L. Bergström,et al.  Estimation of Hamaker Constants of Ceramic Materials from Optical Data Using Lifshitz Theory , 1996 .

[19]  Hiroyuki Ohshima,et al.  A Simple Expression for Henry's Function for the Retardation Effect in Electrophoresis of Spherical Colloidal Particles , 1994 .

[20]  P. Jayaweera,et al.  Determination of the high temperature zeta potential and pH of zero charge of some transition metal oxides , 1994 .

[21]  H. Sasaki,et al.  Separation and classification of fine hematite particles using a glass bead column bed , 1994 .

[22]  Menachem Elimelech,et al.  Effect of particle size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers , 1990 .

[23]  D. Clarke,et al.  Direct measurement of surface forces between sapphire crystals in aqueous solutions , 1988 .

[24]  Norman Epstein,et al.  Fine particle deposition in smooth parallel-plate channels , 1979 .

[25]  D. C. Henry The cataphoresis of suspended particles. Part I.—The equation of cataphoresis , 1931 .

[26]  H. Sasaki,et al.  Coagulation of monodispersed spherical hematite hydrosols. , 1991 .

[27]  J. Raper,et al.  Structure and kinetics of aggregating colloidal haematite , 1990 .

[28]  R. Ottewill,et al.  Stability of monodisperse polystyrene latex dispersions of various sizes , 1966 .