Randomized Incremental Convex Hull is Highly Parallel
暂无分享,去创建一个
Guy E. Blelloch | Yihan Sun | Yan Gu | Julian Shun | G. Blelloch | Julian Shun | Yan Gu | Yihan Sun
[1] Richard Cole,et al. Cascading divide-and-conquer: A technique for designing parallel algorithms , 1989, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).
[2] Charles E. Leiserson,et al. Ordering heuristics for parallel graph coloring , 2014, SPAA.
[3] Herbert Edelsbrunner,et al. Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.
[4] Guy E. Blelloch,et al. Low depth cache-oblivious algorithms , 2010, SPAA '10.
[5] Mariette Yvinec,et al. Applications of random sampling to on-line algorithms in computational geometry , 1992, Discret. Comput. Geom..
[6] Mikhail J. Atallah,et al. Efficient Parallel Solutions to Some Geometric Problems , 1986, J. Parallel Distributed Comput..
[7] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[8] Jihad El-Sana,et al. CudaHull: Fast parallel 3D convex hull on the GPU , 2012, Comput. Graph..
[9] Nancy M. Amato,et al. The parallel 3D convex hull problem revisited , 1992, Int. J. Comput. Geom. Appl..
[10] Mariette Yvinec,et al. Algorithmic geometry , 1998 .
[11] David G. Kirkpatrick,et al. Parallel Construction of Subdivision Hierarchies , 1989, J. Comput. Syst. Sci..
[12] Richard P. Brent,et al. The Parallel Evaluation of General Arithmetic Expressions , 1974, JACM.
[13] Uzi Vishkin,et al. Thinking in Parallel: Some Basic Data-Parallel Algorithms and Techniques , 2008 .
[14] Uzi Vishkin,et al. Optimal parallel approximation for prefix sums and integer sorting , 1994, SODA '94.
[15] Guy E. Blelloch,et al. Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable , 2018, SPAA.
[16] Guy E. Blelloch,et al. Greedy sequential maximal independent set and matching are parallel on average , 2012, SPAA '12.
[17] Kenneth L. Clarkson,et al. Applications of random sampling in computational geometry, II , 1988, SCG '88.
[18] Russ Miller,et al. Efficient Parallel Convex Hull Algorithms , 1988, IEEE Trans. Computers.
[19] Guy E. Blelloch,et al. Parallelism in Randomized Incremental Algorithms , 2018, J. ACM.
[20] Dan Alistarh,et al. Efficiency Guarantees for Parallel Incremental Algorithms under Relaxed Schedulers , 2019, SPAA.
[21] R. Seidel. Backwards Analysis of Randomized Geometric Algorithms , 1993 .
[22] Jean-Daniel Boissonnat,et al. On the Randomized Construction of the Delaunay Tree , 1993, Theor. Comput. Sci..
[23] Anita Liu Chow. Parallel algorithms for geometric problems , 1980 .
[24] Guy E. Blelloch,et al. Sequential Random Permutation, List Contraction and Tree Contraction are Highly Parallel , 2015, SODA.
[25] Richard Cole,et al. Resource Oblivious Sorting on Multicores , 2010, ICALP.
[26] Dan Alistarh,et al. Relaxed Schedulers Can Efficiently Parallelize Iterative Algorithms , 2018, PODC.
[27] Matteo Frigo,et al. The implementation of the Cilk-5 multithreaded language , 1998, PLDI.
[28] Diego R. Llanos,et al. Parallelizing 2 D-Convex Hulls on clusters : Sorting matters , .
[29] John D. Owens,et al. Finding Convex Hulls Using Quickhull on the GPU , 2012, ArXiv.
[30] Pat Morin. Optimal Randomized Parallel Algorithms for Computational Geometry , 2007 .
[31] W ShorPeter,et al. Applications of random sampling in computational geometry, II , 1989 .
[32] Guy E. Blelloch,et al. Parallel Write-Efficient Algorithms and Data Structures for Computational Geometry , 2018, SPAA.
[33] Diego R. Llanos Ferraris,et al. Speculative Parallelization of a Randomized Incremental Convex Hull Algorithm , 2004, ICCSA.
[34] John H. Reif,et al. Optimal randomized parallel algorithms for computational geometry , 2005, Algorithmica.
[35] S. Sitharama Iyengar,et al. Introduction to parallel algorithms , 1998, Wiley series on parallel and distributed computing.
[36] Guy E. Blelloch,et al. The Data Locality of Work Stealing , 2002, SPAA '00.
[37] Nancy M. Amato,et al. Parallel algorithms for higher-dimensional convex hulls , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[38] Raimund Seidel,et al. Small-dimensional linear programming and convex hulls made easy , 1991, Discret. Comput. Geom..
[39] Mikhail J. Atallah,et al. Parallel algorithms for some functions of two convex polygons , 2005, Algorithmica.
[40] Tiow Seng Tan,et al. gHull: A GPU algorithm for 3D convex hull , 2013, TOMS.
[41] Dimitris S. Papailiopoulos,et al. Parallel Correlation Clustering on Big Graphs , 2015, NIPS.
[42] Uzi Vishkin,et al. Towards a theory of nearly constant time parallel algorithms , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[43] Vivek Sarkar,et al. The design and implementation of the habanero-java parallel programming language , 2011, OOPSLA Companion.
[44] Guy E. Blelloch,et al. Parallel Algorithms for Asymmetric Read-Write Costs , 2016, SPAA.
[45] Diego R. Llanos Ferraris,et al. Meseta: a new scheduling strategy for speculative parallelization of randomized incremental algorithms , 2005, 2005 International Conference on Parallel Processing Workshops (ICPPW'05).
[46] Arturo Gonzalez-Escribano,et al. Parallelization alternatives and their performance for the convex hull problem , 2006 .
[47] Manuela Fischer,et al. Tight Analysis of Parallel Randomized Greedy MIS , 2017, SODA.
[48] Ketan Mulmuley,et al. Computational geometry : an introduction through randomized algorithms , 1993 .
[49] Vivek Sarkar,et al. X10: an object-oriented approach to non-uniform cluster computing , 2005, OOPSLA '05.
[50] Guy E. Blelloch,et al. Just Join for Parallel Ordered Sets , 2016, SPAA.
[51] Neelima Gupta,et al. Faster output-sensitive parallel algorithms for 3D convex hulls and vector maxima , 2003, J. Parallel Distributed Comput..