The ability to incorporate functional plastids by the sea slug Elysia viridis is governed by its food source

[1]  H. Wägele,et al.  Chloroplast digestion and the development of functional kleptoplasty in juvenile Elysia timida (Risso, 1818) as compared to short-term and non-chloroplast-retaining sacoglossan slugs , 2017, PloS one.

[2]  W. Martin,et al.  On Being the Right Size as an Animal with Plastids , 2017, Front. Plant Sci..

[3]  M. Kühl,et al.  Kleptoplast photosynthesis is nutritionally relevant in the sea slug Elysia viridis , 2017, Scientific Reports.

[4]  S. Gould,et al.  Mitochondrial Genome Assemblies of Elysia timida and Elysia cornigera and the Response of Mitochondrion-Associated Metabolism during Starvation , 2017, Genome biology and evolution.

[5]  Eunsoo Kim,et al.  Transcriptome analysis illuminates the nature of the intracellular interaction in a vertebrate-algal symbiosis , 2017, eLife.

[6]  H. Wägele,et al.  Photosynthate accumulation in solar-powered sea slugs - starving slugs survive due to accumulated starch reserves , 2017, Frontiers in Zoology.

[7]  Ángel A. Valdés,et al.  Molecular and morphological systematics of Elysia Risso, 1818 (Heterobranchia: Sacoglossa) from the Caribbean region. , 2016, Zootaxa.

[8]  M. Middlebrooks,et al.  Sacoglossan sea slugs make routine use of photosynthesis by a variety of species‐specific adaptations , 2015 .

[9]  G. Toth,et al.  Acquired Phototrophy through Retention of Functional Chloroplasts Increases Growth Efficiency of the Sea Slug Elysia viridis , 2015, PloS one.

[10]  A. Tielens,et al.  Comparison of sister species identifies factors underpinning plastid compatibility in green sea slugs , 2015, Proceedings of the Royal Society B: Biological Sciences.

[11]  J. Serôdio,et al.  Photoprotection in sequestered plastids of sea slugs and respective algal sources , 2015, Scientific Reports.

[12]  E. Hirose Ascidian photosymbiosis: Diversity of cyanobacterial transmission during embryogenesis , 2015, Genesis.

[13]  H. Wägele,et al.  Phylogenetic evidence for multiple independent origins of functional kleptoplasty in Sacoglossa (Heterobranchia, Gastropoda) , 2015, Organisms Diversity & Evolution.

[14]  S. Gould,et al.  A sea slug’s guide to plastid symbiosis , 2014 .

[15]  J. Serôdio,et al.  Pigment profile in the photosynthetic sea slug Elysia viridis (Montagu, 1804) , 2014 .

[16]  G. Toth,et al.  Individual Specialization to Non-Optimal Hosts in a Polyphagous Marine Invertebrate Herbivore , 2014, PloS one.

[17]  S. Gould,et al.  Plastid survival in the cytosol of animal cells. , 2014, Trends in plant science.

[18]  J. Serôdio,et al.  Photophysiology of kleptoplasts: photosynthetic use of light by chloroplasts living in animal cells , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[19]  S. Bell,et al.  Atypical plant–herbivore association of algal food and a kleptoplastic sea slug (Elysia clarki) revealed by DNA barcoding and field surveys , 2014 .

[20]  G. Toth,et al.  Abundance and Size Distribution of the Sacoglossan Elysia viridis on Co-Occurring Algal Hosts on the Swedish West Coast , 2014, PloS one.

[21]  S. Leys,et al.  The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. , 2014, Molecular biology and evolution.

[22]  W. Martin,et al.  Plastid-bearing sea slugs fix CO2 in the light but do not require photosynthesis to survive , 2014, Proceedings of the Royal Society B: Biological Sciences.

[23]  W. Martin,et al.  Endosymbioses in Sacoglossan Seaslugs: Plastid-Bearing Animals that Keep Photosynthetic Organelles Without Borrowing Genes , 2014 .

[24]  T. Schäberle,et al.  Identification of sequestered chloroplasts in photosynthetic and non-photosynthetic sacoglossan sea slugs (Mollusca, Gastropoda) , 2014, Frontiers in Zoology.

[25]  J. Serôdio,et al.  Crawling leaves: photosynthesis in sacoglossan sea slugs. , 2013, Journal of experimental botany.

[26]  S. Fay,et al.  Intracapsular algae provide fixed carbon to developing embryos of the salamander Ambystoma maculatum , 2013, Journal of Experimental Biology.

[27]  T. Schäberle,et al.  What remains after 2 months of starvation? Analysis of sequestered algae in a photosynthetic slug, Plakobranchus ocellatus (Sacoglossa, Opisthobranchia), by barcoding , 2013, Planta.

[28]  M. Rumpho,et al.  Laboratory culturing of Elysia chlorotica reveals a shift from transient to permanent kleptoplasty , 2012, Symbiosis.

[29]  B. Hall,et al.  Intracellular invasion of green algae in a salamander host , 2011, Proceedings of the National Academy of Sciences.

[30]  Ahmed Moustafa,et al.  The making of a photosynthetic animal , 2011, Journal of Experimental Biology.

[31]  T. Maruyama,et al.  Molecular Phylogeny of the Sacoglossa, With a Discussion of Gain and Loss of Kleptoplasty in the Evolution of the Group , 2010, The Biological Bulletin.

[32]  A. Petherick A solar salamander , 2010 .

[33]  Raquel M. Silva,et al.  Photobiology of the symbiotic acoel flatworm Symsagittifera roscoffensis: algal symbiont photoacclimation and host photobehaviour , 2010, Journal of the Marine Biological Association of the United Kingdom.

[34]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[35]  J. Schwartz,et al.  Using Algal Transcriptome Sequences to Identify Transferred Genes in the Sea Slug, Elysia chlorotica , 2010, Evolutionary Biology.

[36]  Raquel M. Silva,et al.  In vivo quantification of kleptoplastic chlorophyll a content in the “solar-powered” sea slug Elysia viridis using optical methods: spectral reflectance analysis and PAM fluorometry , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[37]  Matthew D. Johnson The acquisition of phototrophy: adaptive strategies of hosting endosymbionts and organelles , 2010, Photosynthesis Research.

[38]  R. Nys,et al.  Feeding preferences and host associations of specialist marine herbivores align with quantitative variation in seaweed secondary metabolites , 2009 .

[39]  P. Krug,et al.  Functional chloroplasts in metazoan cells - a unique evolutionary strategy in animal life , 2009, Frontiers in Zoology.

[40]  J. Serôdio,et al.  Effects of light exposure on the retention of kleptoplastic photosynthetic activity in the sacoglossan mollusc Elysia viridis , 2009 .

[41]  G. Johnsen,et al.  In vivo and in vitro differences in chloroplast functionality in the two north Atlantic sacoglossans (Gastropoda, Opisthobranchia) Placida dendritica and Elysia viridis , 2009 .

[42]  J. Middelburg,et al.  Kleptoplasts mediate nitrogen acquisition in the sea slug Elysia viridis , 2008 .

[43]  P. Salomon,et al.  Chloroplast DNA content in Dinophysis (Dinophyceae) from different cell cycle stages is consistent with kleptoplasty. , 2008, Environmental microbiology.

[44]  J. Darias,et al.  Validating an endoperoxide as a key intermediate in the biosynthesis of elysiapyrones. , 2008, Organic letters.

[45]  A. Douglas,et al.  Photosynthetic symbioses in animals. , 2008, Journal of experimental botany.

[46]  G. Johnsen,et al.  Retention of functional chloroplasts in some sacoglossans from the Indo-Pacific and Mediterranean , 2007 .

[47]  Matthew D. Johnson,et al.  Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra , 2007, Nature.

[48]  W. Karasov,et al.  Physiological Ecology: How Animals Process Energy, Nutrients, and Toxins , 2007 .

[49]  F. G. Casalduero,et al.  Photosynthetic activity of the solar-powered lagoon mollusc Elysia timida (Risso, 1818) (Opisthobranchia: Sacoglossa). , 2006 .

[50]  J. Darias,et al.  Elysiapyrones from Elysia diomedea. Do such metabolites evidence an enzymatically assisted electrocyclization cascade for the biosynthesis of their bicyclo[4.2.0]octane core? , 2005, Organic letters.

[51]  K. Jensen Evolution of the Sacoglossa (Mollusca, Opisthobranchia) and the ecological associations with their food plants , 1997, Evolutionary Ecology.

[52]  A. Baker Flexibility and Specificity in Coral-Algal Symbiosis: Diversity, Ecology, and Biogeography of Symbiodinium , 2003 .

[53]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[54]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[55]  C. D. Trowbridge,et al.  HOST-PLANT CHANGE IN MARINE SPECIALIST HERBIVORES: ASCOGLOSSAN SEA SLUGS ON INTRODUCED MACROALGAE , 2001 .

[56]  J. Raven,et al.  What fraction of the organic carbon in sacoglossans is obtained from photosynthesis by kleptoplastids? An investigation using the natural abundance of stable carbon isotopes , 2001 .

[57]  J. Bernhard,et al.  Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology , 1999 .

[58]  Pinder,et al.  OXYGEN TRANSPORT IN EGG MASSES OF THE AMPHIBIANS RANA SYLVATICA AND AMBYSTOMA MACULATUM: CONVECTION, DIFFUSION AND OXYGEN PRODUCTION BY ALGAE , 1994, The Journal of experimental biology.

[59]  K. Jensen Morphological adaptations and plasticity of radular teeth of the Sacoglossa (= Ascoglossa) (Mollusca: Opisthobranchia) in relation to their food plants , 1993 .

[60]  A. Marín,et al.  Dynamics of a peculiar plant-herbivore relationship: the photosynthetic ascoglossan Elysia timida and the chlorophycean Acetabularia acetabulum , 1992 .

[61]  C. D. Trowbridge Diet Specialization Limits Herbivorous Sea Slug's Capacity to Switch Among Food Species , 1991 .

[62]  K. Jensen LEARNING AS A FACTOR IN DIET SELECTION BY ELYSIA VIRIDIS (MONTAGU) (OPISTHOBRANCHIA). , 1989 .

[63]  P. Edmunds,et al.  An energy budget for Porites porites (Scleractinia) , 1986 .

[64]  R. Barnes,et al.  An introduction to marine ecology , 1982 .

[65]  L. Muscatine,et al.  Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration1 , 1981 .

[66]  R. Hinde The metabolism of photosynthetically fixed carbon by isolated chloroplasts from Codium fragile (Chlorophyta: Siphonales) and by Elysia viridis (Mollusca: Sacoglossa) , 1978 .

[67]  D. Smith,et al.  The role of photosynthesis in the nutrition of the mollusc Elysia viridis , 1975 .

[68]  R. Guillard,et al.  Culture of Phytoplankton for Feeding Marine Invertebrates , 1975 .

[69]  R. Trench,et al.  The association between chloroplasts of Codium fragile and the mollusc Elysia viridis - III. Movement of photosynthetically fixed 14C in tissues of intact living E. viridis and in Tridachia crispata , 1974, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[70]  D. Smith,et al.  The association between chloroplasts of Codium fragile and the mollusc Elysia viridis II. Chloroplast ultrastructure and photosynthetic carbon fixation in E. viridis , 1973, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[71]  G. Gooday,et al.  Incorporation of [3H]-Leucine into protein by animal tissues and by endosymbzotic chloroplasts in Elysia viridis montagu , 1973 .

[72]  D. Smith,et al.  Persistence of functional chloroplasts in Elysia viridis (Opisthobranchia, Sacoglossa). , 1972, Nature: New biology.

[73]  L. Muscatine,et al.  Symbiosis in sacoglossan opisthobranchs: photosynthetic products of animal-chloroplast associations , 1972, Marine Biology.

[74]  L. Muscatine,et al.  Utilization of photosynthetic products of symbiotic chloroplasts in mucus synthesis by Placobranchus ianthobapsus (gould), opisthobranchia, sacoglossa , 1970 .

[75]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.