Surface-initiated polymerization from TiO2 nanoparticle surfaces through a biomimetic initiator: A new route toward polymer–matrix nanocomposites

Abstract Polymer nanocomposites of core–shell structure were prepared by grafting poly(methyl methacrylate) (PMMA) from TiO 2 nanoparticle via the surface-initiated polymerization (SIP) strategy. A bifunctional polymerization initiator inspired by l -3,4-dihydroxyphenylalanine (DOPA), a key constituent of mussel adhesive proteins (MAPs), was designed and synthesized for use in SIP from oxide surfaces. The biomimetic initiator spontaneously adsorbed to TiO 2 from aqueous solution, resulting in a colloidal initiator system with the initiator content of approximately 6.8 wt%. Subsequent in situ activation of the surface-initiated atom transfer radical polymerization (SI-ATRP) gave rise to PMMA polymer shell layers tethered to TiO 2 nanoparticle cores. The results demonstrate a viable biomimetic strategy toward the preparation of polymer functionalized metal oxide nanoparticles that may be useful for construction of functional polymer nanocomposites.

[1]  R. Garrell,et al.  Surface-enhanced Raman spectroscopy of DOPA-containing peptides related to adhesive protein of marine mussel, Mytilus edulis. , 2000, Biopolymers.

[2]  Blesa,et al.  Surface Complexation at the TiO(2) (anatase)/Aqueous Solution Interface: Chemisorption of Catechol. , 1996, Journal of colloid and interface science.

[3]  Miaoer Yu,et al.  Role of l-3,4-Dihydroxyphenylalanine in Mussel Adhesive Proteins , 1999 .

[4]  R. Advíncula Surface Initiated Polymerization from Nanoparticle Surfaces , 2003 .

[5]  W. Brittain,et al.  Polymer brushes: surface-immobilized macromolecules , 2000 .

[6]  T. Tachikawa,et al.  Photocatalytic one-electron oxidation of biphenyl derivatives strongly coupled with the TiO2 surface. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[7]  N. Tsubokawa,et al.  Grafting of polymers onto ultrafine inorganic particle surface: graft polymerization of vinyl monomers initiated by the system consisting of trichloroacetyl groups on the surface and molybdenum hexacarbonyl , 1997 .

[8]  K. Matyjaszewski,et al.  Optimization of atom transfer radical polymerization using Cu(I)/ tris(2-(dimethylamino)ethyl)amine as a catalyst , 2000 .

[9]  S. Punchihewa,et al.  Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates , 1991 .

[10]  Z John Zhang,et al.  Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles. , 2002, Journal of the American Chemical Society.

[11]  D. Resasco,et al.  Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate. , 2004, Journal of the American Chemical Society.

[12]  N. Tsubokawa,et al.  Graft polymerization of vinyl monomers from initiating groups introduced onto polymethylsiloxane-coated titanium dioxide modified with alcoholic hydroxyl groups , 1999 .

[13]  R. Advíncula,et al.  Polymer Brushes Grafted from Clay Nanoparticles Adsorbed on a Planar Substrate by Free Radical Surface-Initiated Polymerization , 2003 .

[14]  A. Clark,et al.  Atom transfer radical polymerisation (ATRP) of methyl methacrylate in the presence of radical inhibitors , 1997 .

[15]  E. Sudoł,et al.  XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation , 2001 .

[16]  Shinpei Yamamoto,et al.  Controlled Graft Polymerization of Methyl Methacrylate on Silicon Substrate by the Combined Use of the Langmuir−Blodgett and Atom Transfer Radical Polymerization Techniques , 1998 .

[17]  Tijana Rajh,et al.  Surface Restructuring of Nanoparticles: An Efficient Route for Ligand−Metal Oxide Crosstalk , 2002 .

[18]  K. Koh,et al.  Synthesis of Gold Nanoparticles Coated with Well-Defined, High-Density Polymer Brushes by Surface-Initiated Living Radical Polymerization , 2002 .

[19]  C. Tanford Macromolecules , 1994, Nature.

[20]  R. Advíncula,et al.  Living Anionic Surface-Initiated Polymerization (LASIP) of Styrene from Clay Nanoparticles Using Surface Bound 1,1-Diphenylethylene (DPE) Initiators , 2002 .

[21]  G. Botton,et al.  Polymerization from the surface of single-walled carbon nanotubes - preparation and characterization of nanocomposites. , 2003, Journal of the American Chemical Society.

[22]  R. Advíncula,et al.  Living Anionic Surface-Initiated Polymerization (LASIP) of a Polymer on Silica Nanoparticles , 2002 .

[23]  William J. Brittain,et al.  Synthesis and Characterization of PMMA Nanocomposites by Suspension and Emulsion Polymerization , 2001 .

[24]  M. McBride,et al.  Chemisorption of catechol on gibbsite, boehmite, and noncrystalline alumina surfaces , 1988 .

[25]  Ayusman Sen,et al.  Synthesis of Aluminum Oxide/Gradient Copolymer Composites by Atom Transfer Radical Polymerization , 2002 .

[26]  Krzysztof Matyjaszewski,et al.  Controlled/“Living” Radical Polymerization. Kinetics of the Homogeneous Atom Transfer Radical Polymerization of Styrene , 1997 .

[27]  Toshio Kurauchi,et al.  Mechanical properties of nylon 6-clay hybrid , 1993 .

[28]  Karol Putyera,et al.  Dekker Encyclopedia of Nanoscience and Nanotechnology , 2004 .

[29]  Krzysztof Matyjaszewski,et al.  Synthesis of Nanocomposite Organic/Inorganic Hybrid Materials Using Controlled/“Living” Radical Polymerization , 2001 .

[30]  Phil Bremer,et al.  Siderophore-mediated covalent bonding to metal (oxide) surfaces during biofilm initiation by Pseudomonas aeruginosa bacteria , 2003 .

[31]  A. J. McQuillan,et al.  New Sol-Gel Attenuated Total-Reflection Infrared Spectroscopic Method for Analysis of Adsorption at Metal-Oxide Surfaces in Aqueous-Solutions - Chelation of TiO2, ZrO2, and Al2O3 Surfaces by Catechol, 8-Quinolinol, and Acetylacetone , 1995 .

[32]  M. Sever,et al.  Metal-mediated cross-linking in the generation of a marine-mussel adhesive. , 2004, Angewandte Chemie.

[33]  Steven P. Armes,et al.  Synthesis of Well-Defined, Polymer-Grafted Silica Particles by Aqueous ATRP , 2001 .

[34]  K. Matyjaszewski,et al.  Synthesis of Polymer Brushes Using Atom Transfer Radical Polymerization , 2003 .

[35]  P. Behrens,et al.  Organic/inorganic hybrids by ‘living’/controlled ATRP grafting from layered silicates , 2002 .

[36]  B. Borgias,et al.  Synthetic, structural, and physical studies of titanium complexes of catechol and 3,5-di-tert-butylcatechol , 1984 .

[37]  J. Rühe,et al.  Synthesis of Poly(styrene) Monolayers Attached to High Surface Area Silica Gels through Self-Assembled Monolayers of Azo Initiators , 1998 .

[38]  Matthew D. Miller,et al.  Kinetics of surface-initiated atom transfer radical polymerization , 2003 .

[39]  J. Waite,et al.  Polyphenolic Substance of Mytilus edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline. , 1981, Science.

[40]  H. Yamamoto Marine adhesive proteins and some biotechnological applications. , 1996, Biotechnology & genetic engineering reviews.

[41]  P. Dubois,et al.  Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials , 2000 .

[42]  E. Giannelis,et al.  Direct Synthesis of Dispersed Nanocomposites by in Situ Living Free Radical Polymerization Using a Silicate-Anchored Initiator , 1999 .

[43]  Lijun Lin,et al.  Biomimetic anchor for surface-initiated polymerization from metal substrates. , 2005, Journal of the American Chemical Society.

[44]  Bruce P. Lee,et al.  Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels. , 2002, Biomacromolecules.

[45]  S. Martin,et al.  Surface Structures of 4-Chlorocatechol Adsorbed on Titanium Dioxide , 1996 .

[46]  D. Yan,et al.  Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. , 2004, Journal of the American Chemical Society.

[47]  Daniel E. Resasco,et al.  Functionalization of Single-Walled Carbon Nanotubes with Polystyrene via Grafting to and Grafting from Methods , 2004 .

[48]  Ellen Moons,et al.  Hybrid Inorganic−Organic Core−Shell Nanoparticles from Surface-Functionalized Titanium, Zirconium, and Vanadium Oxo Clusters , 2002 .

[49]  Bruce P. Lee,et al.  Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. , 2003, Journal of the American Chemical Society.

[50]  Bruce P. Lee,et al.  Synthesis and characterization of self-assembling block copolymers containing bioadhesive end groups. , 2002, Biomacromolecules.

[51]  T. Patten,et al.  Atom transfer radical polymerization from nanoparticles: a tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/"living" radical polymerizations from surfaces. , 2001, Journal of the American Chemical Society.