Invariant transports of stationary random measures and mass-stationarity

We introduce and discuss balancing invariant transports of stationary random measures on a Polish Abelian group. The first main result is an associated fundamental invariance property of Palm measures, derived from a generalization of Neveu’s exchange formula. The second main result is a simple sufficient and necessary criterion for the existence of balancing invariant transports. We then introduce (in a non-stationary setting) the concept of mass-stationarity with respect to a random measure, formalizing the intuitive idea that the origin is a typical location in the mass. The third main result of the paper is that a measure is a Palm measure if and only if it is mass-stationary.

[1]  Alexander E. Holroyd,et al.  Trees and Matchings from Point Processes , 2002, math/0211455.

[2]  Gerry Leversha,et al.  Foundations of modern probability (2nd edn), by Olav Kallenberg. Pp. 638. £49 (hbk). 2002. ISBN 0 387 95313 2 (Springer-Verlag). , 2004, The Mathematical Gazette.

[3]  Point shift characterization of Palm measures on Abelian groups , 2007 .

[4]  Günter Last Stationary partitions and Palm probabilities , 2006, Advances in Applied Probability.

[5]  Adam Timar,et al.  Tree and Grid factors of General Point processes , 2004, 0909.1092.

[6]  H. Thorisson Transforming random elements and shifting random fields , 1996 .

[7]  H. Thorisson Point stationarity in d dimensions and Palm theory , 1999 .

[8]  H. Thorisson Coupling, stationarity, and regeneration , 2000 .

[9]  Invarianzeigenschaften allgemeiner Palmscher Ma?e , 1975 .

[10]  Sidney C. Port,et al.  Infinite particle systems , 1973 .

[11]  Characterization of mass-stationarity by Bernoulli and Cox transports , 2010 .

[12]  Matthias Heveling Characterization of Palm measures via bijective point-shifts , 2005 .

[13]  Russell Lyons,et al.  Group-invariant Percolation on Graphs , 1999 .

[14]  U. Zähle,et al.  Self-similar random measures , 1988 .

[15]  John Frank Charles Kingman,et al.  Infinitely Divisible Point Processes , 1979 .

[16]  Poisson trees, succession lines and coalescing random walks , 2002, math/0209395.

[17]  D. Geman,et al.  Random shifts which preserve measure , 1975 .

[18]  D. Aldous,et al.  Processes on Unimodular Random Networks , 2006, math/0603062.

[19]  Alexander E. Holroyd,et al.  Extra heads and invariant allocations , 2003, math/0306402.

[20]  J. Mecke,et al.  Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen , 1967 .

[21]  T. Liggett,et al.  How to Find an extra Head: Optimal Random Shifts of Bernoulli and Poisson Random Fields , 2001 .

[22]  E. CastroPeter,et al.  Infinitely Divisible Point Processes , 1982 .

[23]  T. E. Harris Random measures and motions of point processes , 1971 .

[24]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[25]  G. Last Stationary Random Measures on Homogeneous Spaces , 2010 .

[26]  Thomas M. Liggett,et al.  Tagged Particle Distributions or How to Choose a Head at Random , 2002 .

[27]  S. Rachev,et al.  Mass transportation problems , 1998 .

[28]  G. Last,et al.  Modern random measures : Palm theory and related models , 2008 .

[29]  Dan Romik,et al.  Gravitational allocation to Poisson points , 2006, math/0611886.