Numerical simulations of a transient injection flow at low Mach number regime

In this paper, a transient injection flow at low Mach number regime is investigated. Three different methods are used and analyzed. Two of them are based on asymptotic models of the Navier-Stokes equations valid for small Mach numbers, whereas the other is based on the full compressible Navier-Stokes equations, with particular care given to the discretization at low Mach numbers. Numerical solutions are computed both with or without the gravity force. Finally, the performance of the solvers in terms of CPU-time consumption is investigated, and the sensitivity of the solution to some parameters, which affect CPU time is also performed.

[1]  Rémi Abgrall,et al.  Special issue: Low Mach number flows. Selected papers based on the presentation at the international conference, Porquerolles Island, France, June 21--25, 2004. , 2005 .

[2]  M. Heitsch,et al.  Evaluation of computational fluid dynamic methods for reactor safety analysis (ECORA) , 2005 .

[3]  H. Paillere,et al.  Comparison of low Mach number models for natural convection problems , 2000 .

[4]  Borut Mavko,et al.  Modeling of containment atmosphere mixing and stratification experiment using a CFD approach , 2006 .

[5]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[6]  G. Dhatt,et al.  Une présentation de la méthode des éléments finis , 1984 .

[7]  R. Maccormack,et al.  Convergence characteristics of approximate factorization methods , 1998 .

[8]  D. Gray,et al.  The validity of the boussinesq approximation for liquids and gases , 1976 .

[9]  C. Munz,et al.  The extension of incompressible flow solvers to the weakly compressible regime , 2003 .

[10]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[11]  Habib N. Najm,et al.  Modeling Low Mach Number Reacting Flow with Detailed Chemistry and Transport , 2005, J. Sci. Comput..

[12]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[13]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .

[14]  C. Munz,et al.  Multiple pressure variables methods for fluid flow at all Mach numbers , 2005 .

[15]  Jan Vierendeels,et al.  Modelling of natural convection flows with large temperature differences: A benchmark problem for low Mach number solvers. Part 2. Contributions to the June 2004 conference , 2005 .

[16]  S. Paolucci,et al.  Natural convection in an enclosed vertical air layer with large horizontal temperature differences , 1986, Journal of Fluid Mechanics.

[17]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[18]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[19]  Jörn Sesterhenn,et al.  On the Cancellation Problem in Calculating Compressible Low Mach Number Flows , 1999 .

[20]  P. Wesseling,et al.  A conservative pressure-correction method for flow at all speeds , 2003 .

[21]  E. Turkel,et al.  PRECONDITIONING TECHNIQUES IN COMPUTATIONAL FLUID DYNAMICS , 1999 .

[22]  Thibaud Kloczko DÉVELOPPEMENT D'UNE MÉTHODE IMPLICITE SANS MATRICE POUR LA SIMULATION 2D-3D DES ÉCOULEMENTS COMPRESSIBLES ET FAIBLEMENT COMPRESSIBLES EN MAILLAGES NON-STRUCTURÉS , 2006 .

[23]  Jochen Fröhlich Résolution numérique des équations de Navier-Stokes à faible nombre de Mach par méthode spectrale , 1990 .

[24]  P. Royl,et al.  Analysis of steam and hydrogen distributions with PAR mitigation in NPP containments , 2000 .

[25]  Andreas Meister,et al.  Asymptotic Single and Multiple Scale Expansions in the Low Mach Number Limit , 1999, SIAM J. Appl. Math..

[26]  Rainald Löhner,et al.  Extension of Harten-Lax-van Leer Scheme for Flows at All Speeds. , 2005 .

[27]  O. Cioni,et al.  Low Mach number model for compressible flows and application to HTR , 2003 .

[28]  Y. Saad,et al.  Iterative solution of linear systems in the 20th century , 2000 .

[29]  Jan Vierendeels,et al.  Modelling of natural convection flows with large temperature differences : a benchmark problem for low Mach number solvers. Part 1, Reference solutions , 2005 .